Massive spinning bosons on the celestial sphere

Abstract

A natural extension of the Pasterski-Shao-Strominger (PSS) prescription is described, enabling the map of Minkowski space amplitudes with massive spinning external legs to the celestial sphere to be performed. An integral representation for the conformal primary wave function (CPW) of massive spinning bosons on the celestial sphere is derived explicitly for spin-one and -two. By analogy with the spin-zero case, the spinning bulk-to-boundary propagator on Euclidean AdS is employed to extend the massive CPW integral representation to arbitrary integer spin, and to describe the appropriate inverse transform of massive spinning CPWs back to the plane wave basis in Minkowski space. Subsequently, a massive spin-s momentum operator representation on the celestial sphere is determined, and used in conjunction with known Lorentz generators to derive Poincaré symmetry constraints on generic massive spinning two-, three- and four-point celestial amplitude structures. Finally, as a consistency check, three-point Minkowski space amplitudes of two massless scalars and a spin-one or -two massive boson are explicitly mapped to the celestial sphere, and the resulting three-point function coefficients are confirmed to be in exact agreement with the results obtained from Poincaré symmetry constraints.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev.D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. [2]

    S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev.D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. [3]

    C. Cardona and Y.-t. Huang, S-matrix singularities and CFT correlation functions, JHEP08 (2017) 133 [arXiv:1702.03283] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    S. Pasterski, S.-H. Shao and A. Strominger, Gluon Amplitudes as 2d Conformal Correlators, Phys. Rev.D 96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. [5]

    H.T. Lam and S.-H. Shao, Conformal Basis, Optical Theorem and the Bulk Point Singularity, Phys. Rev.D 98 (2018) 025020 [arXiv:1711.06138] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. [6]

    N. Banerjee, S. Banerjee, S. Atul Bhatkar and S. Jain, Conformal Structure of Massless Scalar Amplitudes Beyond Tree level, JHEP04 (2018) 039 [arXiv:1711.06690] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    S. Banerjee, Symmetries of free massless particles and soft theorems, Gen. Rel. Grav.51 (2019) 128 [arXiv:1804.06646] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    A. Schreiber, A. Volovich and M. Zlotnikov, Tree-level gluon amplitudes on the celestial sphere, Phys. Lett.B 781 (2018) 349 [arXiv:1711.08435] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    S. Stieberger and T.R. Taylor, Strings on Celestial Sphere, Nucl. Phys.B 935 (2018) 388 [arXiv:1806.05688] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    S. Banerjee, Null Infinity and Unitary Representation of The Poincaŕe Group, JHEP01 (2019) 205 [arXiv:1801.10171] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    S. Banerjee, S. Ghosh, P. Pandey and A.P. Saha, Modified celestial amplitude in Einstein gravity, JHEP03 (2020) 125 [arXiv:1909.03075] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    S. Stieberger and T.R. Taylor, Symmetries of Celestial Amplitudes, Phys. Lett.B 793 (2019) 141 [arXiv:1812.01080] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    L. Donnay, A. Puhm and A. Strominger, Conformally Soft Photons and Gravitons, JHEP01 (2019) 184 [arXiv:1810.05219] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    S. Banerjee, P. Pandey and P. Paul, Conformal properties of soft operators: Use of null states, Phys. Rev.D 101 (2020) 106014 [arXiv:1902.02309] [INSPIRE].

    Google Scholar 

  15. [15]

    W. Fan, A. Fotopoulos and T.R. Taylor, Soft Limits of Yang-Mills Amplitudes and Conformal Correlators, JHEP05 (2019) 121 [arXiv:1903.01676] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. [16]

    M. Pate, A.-M. Raclariu and A. Strominger, Conformally Soft Theorem in Gauge Theory, Phys. Rev.D 100 (2019) 085017 [arXiv:1904.10831] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. [17]

    D. Nandan, A. Schreiber, A. Volovich and M. Zlotnikov, Celestial Amplitudes: Conformal Partial Waves and Soft Limits, JHEP10 (2019) 018 [arXiv:1904.10940] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    T. Adamo, L. Mason and A. Sharma, Celestial amplitudes and conformal soft theorems, Class. Quant. Grav.36 (2019) 205018 [arXiv:1905.09224] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    A. Puhm, Conformally Soft Theorem in Gravity, arXiv:1905.09799 [INSPIRE].

  20. [20]

    A. Guevara, Notes on Conformal Soft Theorems and Recursion Relations in Gravity, arXiv:1906.07810 [INSPIRE].

  21. [21]

    E. Himwich and A. Strominger, Celestial current algebra from Low’s subleading soft theorem, Phys. Rev.D 100 (2019) 065001 [arXiv:1901.01622] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. [22]

    A. Ball, E. Himwich, S.A. Narayanan, S. Pasterski and A. Strominger, Uplifting AdS3/C F T2to flat space holography, JHEP08 (2019) 168 [arXiv:1905.09809] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    A. Fotopoulos and T.R. Taylor, Primary Fields in Celestial CFT, JHEP10 (2019) 167 [arXiv:1906.10149] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M. Pate, A.-M. Raclariu, A. Strominger and E.Y. Yuan, Celestial Operator Products of Gluons and Gravitons, arXiv:1910.07424 [INSPIRE].

  25. [25]

    Y.T.A. Law and M. Zlotnikov, Poincaré constraints on celestial amplitudes, JHEP03 (2020) 085 [Erratum ibid.04 (2020) 202] [arXiv:1910.04356] [INSPIRE].

  26. [26]

    S. Banerjee, S. Ghosh and R. Gonzo, BMS symmetry of celestial OPE, JHEP04 (2020) 130 [arXiv:2002.00975] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Extended BMS Algebra of Celestial CFT, JHEP03 (2020) 130 [arXiv:1912.10973] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    H. Osborn, Conformal Blocks for Arbitrary Spins in Two Dimensions, Phys. Lett.B 718 (2012) 169 [arXiv:1205.1941] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer-Verlag New York, Inc. (1997) [DOI] [INSPIRE].

  30. [30]

    M.S. Costa, V. Gonçalves and J. Penedones, Spinning AdS Propagators, JHEP09 (2014) 064 [arXiv:1404.5625] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering Amplitudes For All Masses and Spins, arXiv:1709.04891 [INSPIRE].

  33. [33]

    K. Hinterbichler, A. Joyce and R.A. Rosen, Massive Spin-2 Scattering and Asymptotic Superluminality, JHEP03 (2018) 051 [arXiv:1708.05716] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Zlotnikov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2004.04309

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Law, Y.T.A., Zlotnikov, M. Massive spinning bosons on the celestial sphere. J. High Energ. Phys. 2020, 79 (2020). https://doi.org/10.1007/JHEP06(2020)079

Download citation

Keywords

  • Scattering Amplitudes
  • Space-Time Symmetries