dS spaces and brane worlds in exotic string theories

Abstract

We investigate string-phenomenological questions of Hull’s exotic superstring theories with Euclidean strings/branes and multiple times. These are known to be plagued by pathologies like the occurrence of ghosts. On the other hand, these theories exhibit de Sitter solutions. Our special focus lies on the question of the coexistence of such de Sitter solutions and ghost-free brane worlds. To this end, the world-sheet CFT description of Euclidean fundamental strings is generalized to include also the open string/D-brane sector. Demanding that in the “observable” gauge theory sector the gauge fields themselves are non-ghosts, a generalization of the dS swampland conjecture is found.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE].

  2. [2]

    E. Palti, The Swampland: Introduction and Review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].

  3. [3]

    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].

  4. [4]

    H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

  5. [5]

    D. Klaewer and E. Palti, Super-Planckian Spatial Field Variations and Quantum Gravity, JHEP01 (2017) 088 [arXiv:1610.00010] [INSPIRE].

  6. [6]

    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys.21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].

  7. [7]

    E. Palti, The Weak Gravity Conjecture and Scalar Fields, JHEP08 (2017) 034 [arXiv:1705.04328] [INSPIRE].

  8. [8]

    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].

  9. [9]

    D. Andriot, On the de Sitter swampland criterion, Phys. Lett.B 785 (2018) 570 [arXiv:1806.10999] [INSPIRE].

  10. [10]

    S. Cecotti and C. Vafa, Theta-problem and the String Swampland, arXiv:1808.03483 [INSPIRE].

  11. [11]

    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, JHEP11 (2019) 075 [arXiv:1807.05193] [INSPIRE].

  12. [12]

    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett.B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].

  13. [13]

    F.F. Gautason, V. Van Hemelryck and T. Van Riet, The Tension between 10D Supergravity and dS Uplifts, Fortsch. Phys.67 (2019) 1800091 [arXiv:1810.08518] [INSPIRE].

  14. [14]

    D. Klaewer, D. Lüst and E. Palti, A Spin-2 Conjecture on the Swampland, Fortsch. Phys.67 (2019) 1800102 [arXiv:1811.07908] [INSPIRE].

  15. [15]

    J.J. Heckman and C. Vafa, Fine Tuning, Sequestering and the Swampland, Phys. Lett.B 798 (2019) 135004 [arXiv:1905.06342] [INSPIRE].

  16. [16]

    D. Lüst, E. Palti and C. Vafa, AdS and the Swampland, Phys. Lett.B 797 (2019) 134867 [arXiv:1906.05225] [INSPIRE].

  17. [17]

    A. Bedroya and C. Vafa, Trans-Planckian Censorship and the Swampland, arXiv:1909.11063 [INSPIRE].

  18. [18]

    A. Kehagias, D. Lüst and S. Lüst, Swampland, Gradient Flow and Infinite Distance, JHEP04 (2020) 170 [arXiv:1910.00453] [INSPIRE].

  19. [19]

    R. Blumenhagen, M. Brinkmann and A. Makridou, Quantum Log-Corrections to Swampland Conjectures, JHEP02 (2020) 064 [arXiv:1910.10185] [INSPIRE].

  20. [20]

    B. Heidenreich, M. Reece and T. Rudelius, The Weak Gravity Conjecture and Emergence from an Ultraviolet Cutoff, Eur. Phys. J.C 78 (2018) 337 [arXiv:1712.01868] [INSPIRE].

  21. [21]

    T.W. Grimm, E. Palti and I. Valenzuela, Infinite Distances in Field Space and Massless Towers of States, JHEP08 (2018) 143 [arXiv:1802.08264] [INSPIRE].

  22. [22]

    B. Heidenreich, M. Reece and T. Rudelius, Emergence of Weak Coupling at Large Distance in Quantum Gravity, Phys. Rev. Lett.121 (2018) 051601 [arXiv:1802.08698] [INSPIRE].

  23. [23]

    S.-J. Lee, W. Lerche and T. Weigand, Tensionless Strings and the Weak Gravity Conjecture, JHEP10 (2018) 164 [arXiv:1808.05958] [INSPIRE].

  24. [24]

    S.-J. Lee, W. Lerche and T. Weigand, A Stringy Test of the Scalar Weak Gravity Conjecture, Nucl. Phys.B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].

  25. [25]

    S.-J. Lee, W. Lerche and T. Weigand, Emergent Strings from Infinite Distance Limits, arXiv:1910.01135 [INSPIRE].

  26. [26]

    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys.D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].

  27. [27]

    G. Dvali and C. Gomez, Quantum Exclusion of Positive Cosmological Constant?, Annalen Phys.528 (2016) 68 [arXiv:1412.8077] [INSPIRE].

  28. [28]

    G. Dvali, C. Gomez and S. Zell, Quantum Break-Time of de Sitter, JCAP06 (2017) 028 [arXiv:1701.08776] [INSPIRE].

  29. [29]

    G. Dvali, C. Gomez and S. Zell, Quantum Breaking Bound on de Sitter and Swampland, Fortsch. Phys.67 (2019) 1800094 [arXiv:1810.11002] [INSPIRE].

  30. [30]

    G. Dvali and C. Gomez, On Exclusion of Positive Cosmological Constant, Fortsch. Phys.67 (2019) 1800092 [arXiv:1806.10877] [INSPIRE].

  31. [31]

    K. Dasgupta, M. Emelin, M.M. Faruk and R. Tatar, de Sitter Vacua in the String Landscape, arXiv:1908.05288 [INSPIRE].

  32. [32]

    K. Dasgupta, M. Emelin, M.M. Faruk and R. Tatar, How a four-dimensional de Sitter solution remains outside the swampland, arXiv:1911.02604 [INSPIRE].

  33. [33]

    C.M. Hull, Timelike T duality, de Sitter space, large N gauge theories and topological field theory, JHEP07 (1998) 021 [hep-th/9806146] [INSPIRE].

  34. [34]

    C.M. Hull, Duality and the signature of space-time, JHEP11 (1998) 017 [hep-th/9807127] [INSPIRE].

  35. [35]

    C.M. Hull and R.R. Khuri, Branes, times and dualities, Nucl. Phys.B 536 (1998) 219 [hep-th/9808069] [INSPIRE].

  36. [36]

    C.M. Hull and R.R. Khuri, World volume theories, holography, duality and time, Nucl. Phys.B 575 (2000) 231 [hep-th/9911082] [INSPIRE].

  37. [37]

    N. Bobev, P. Bomans and F.F. Gautason, Spherical Branes, JHEP08 (2018) 029 [arXiv:1805.05338] [INSPIRE].

  38. [38]

    N. Bobev, P. Bomans, F.F. Gautason, J.A. Minahan and A. Nedelin, Supersymmetric Yang-Mills, Spherical Branes and Precision Holography, JHEP03 (2020) 047 [arXiv:1910.08555] [INSPIRE].

  39. [39]

    R. Dijkgraaf, B. Heidenreich, P. Jefferson and C. Vafa, Negative Branes, Supergroups and the Signature of Spacetime, JHEP02 (2018) 050 [arXiv:1603.05665] [INSPIRE].

  40. [40]

    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

  41. [41]

    H. Ooguri and C. Vafa, N = 2 heterotic strings, Nucl. Phys.B 367 (1991) 83 [INSPIRE].

  42. [42]

    J.M. Maldacena and C. Nún˜ez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys.A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

  43. [43]

    D. Junghans, Weakly Coupled de Sitter Vacua with Fluxes and the Swampland, JHEP03 (2019) 150 [arXiv:1811.06990] [INSPIRE].

  44. [44]

    H. Ooguri and C. Vafa, Geometry of N = 2 strings, Nucl. Phys.B 361 (1991) 469 [INSPIRE].

  45. [45]

    I. Quiros, Time-like versus space-like extra dimensions, arXiv:0707.0714 [INSPIRE].

  46. [46]

    P.A.M. Dirac, Unitary Representations of the Lorentz Group, Proc. Roy. Soc. Lond.A 183 (1945) 284 [INSPIRE].

  47. [47]

    W. Pauli and F. Villars, On the Invariant regularization in relativistic quantum theory, Rev. Mod. Phys.21 (1949) 434 [INSPIRE].

  48. [48]

    S.N. Gupta, Theory of longitudinal photons in quantum electrodynamics, Proc. Phys. Soc.A 63 (1950) 681 [INSPIRE].

  49. [49]

    K. BlEuler, A New method of treatment of the longitudinal and scalar photons, Helv. Phys. Acta23 (1950) 567 [INSPIRE].

  50. [50]

    P. Di Vecchia and A. Liccardo, D Branes in String Theory, I, NATO Sci. Ser. C556 (2000) 1 [hep-th/9912161] [INSPIRE].

  51. [51]

    P. Di Vecchia and A. Liccardo, D-branes in string theory. 2., in YITP Workshop on Developments in Superstring and M-theory, Kyoto Japan (1999), pg. 7 [hep-th/9912275] [INSPIRE].

  52. [52]

    R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory, Lect. Notes Phys.779 (2009) 1 [INSPIRE].

  53. [53]

    A. Recknagel and V. Schomerus, Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2013).

  54. [54]

    C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept.371 (2002) 1 [Erratum ibid.376 (2003) 407] [hep-th/0204089] [INSPIRE].

  55. [55]

    V. Cortés eds., Handbook of Pseudo-Riemannian Geometry and Supersymmetry, IRMA Lectures in Mathematics and Theoretical Physics. Vol. 16, European Mathematical Society, Zürich Switzerland (2010).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ralph Blumenhagen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2002.11746

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blumenhagen, R., Brinkmann, M., Makridou, A. et al. dS spaces and brane worlds in exotic string theories. J. High Energ. Phys. 2020, 77 (2020). https://doi.org/10.1007/JHEP06(2020)077

Download citation

Keywords

  • Conformal Field Models in String Theory
  • D-branes
  • Superstrings and Het- erotic Strings