Sequentially loop suppressed fermion masses from a single discrete symmetry


We propose a systematic and renormalizable sequential loop suppression mechanism to generate the hierarchy of the Standard Model fermion masses from one discrete symmetry. The discrete symmetry is sequentially softly broken in order to generate one-loop level masses for the bottom, charm, tau and muon leptons and two-loop level masses for the lightest Standard Model charged fermions. The tiny masses for the light active neutrinos are produced from radiative type-I seesaw mechanism, where the Dirac mass terms are effectively generated at two-loop level.

A preprint version of the article is available at ArXiv.


  1. [1]

    T.P. Cheng and L.-F. Li, On Weak Interaction Induced Neutrino Oscillations, Phys. Rev.D 17 (1978) 2375 [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev.D 22 (1980) 2860 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    D. Chang and R.N. Mohapatra, Small and Calculable Dirac Neutrino Mass, Phys. Rev. Lett.58 (1987) 1600 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    R.N. Mohapatra, Left-right Symmetry and Finite One Loop Dirac Neutrino Mass, Phys. Lett.B 201 (1988) 517 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    G.C. Branco and C.Q. Geng, Naturally Small Dirac Neutrino Masses in Superstring Theories, Phys. Rev. Lett.58 (1987) 969 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    B.S. Balakrishna, A.L. Kagan and R.N. Mohapatra, Quark Mixings and Mass Hierarchy From Radiative Corrections, Phys. Lett.B 205 (1988) 345 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    E. Ma, Radiative Quark and Lepton Masses Through Soft Supersymmetry Breaking, Phys. Rev.D 39 (1989) 1922 [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    E. Ma, D. Ng, J.T. Pantaleone and G.-G. Wong, One Loop Induced Fermion Masses and Exotic Interactions in a Standard Model Context, Phys. Rev.D 40 (1989) 1586 [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    E. Ma, Hierarchical Radiative Quark and Lepton Mass Matrices, Phys. Rev. Lett.64 (1990) 2866 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett.81 (1998) 1171 [hep-ph/9805219] [INSPIRE].

  11. [11]

    W. Altmannshofer, C. Frugiuele and R. Harnik, Fermion Hierarchy from Sfermion Anarchy, JHEP12 (2014) 180 [arXiv:1409.2522] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    A. Ibarra and A. Solaguren-Beascoa, Radiative Generation of Quark Masses and Mixing Angles in the Two Higgs Doublet Model, Phys. Lett.B 736 (2014) 16 [arXiv:1403.2382] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    A.E. Cárcamo Hernández, A novel and economical explanation for SM fermion masses and mixings, Eur. Phys. J.C 76 (2016) 503 [arXiv:1512.09092] [INSPIRE].

    Article  Google Scholar 

  14. [14]

    D. Aristizabal Sierra, C. Simoes and D. Wegman, Closing in on minimal dark matter and radiative neutrino masses, JHEP06 (2016) 108 [arXiv:1603.04723] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    C. Arbeláez, A.E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Radiative Seesaw-type Mechanism of Fermion Masses and Non-trivial Quark Mixing, Eur. Phys. J.C 77 (2017) 422 [arXiv:1602.03607] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    A. Dev and R.N. Mohapatra, Natural Alignment of Quark Flavors and Radiatively Induced Quark Mixings, Phys. Rev.D 98 (2018) 073002 [arXiv:1804.01598] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    R. Cepedello, R.M. Fonseca and M. Hirsch, Systematic classification of three-loop realizations of the Weinberg operator, JHEP10 (2018) 197 [arXiv:1807.00629] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    S. Centelles Chuliá, R. Cepedello, E. Peinado and R. Srivastava, Scotogenic Dark Symmetry as a residual subgroup of Standard Model Symmetries, arXiv:1901.06402 [INSPIRE].

  19. [19]

    C. Bonilla, S. Centelles-Chuliá, R. Cepedello, E. Peinado and R. Srivastava, Dark matter stability and Dirac neutrinos using only Standard Model symmetries, Phys. Rev.D 101 (2020) 033011 [arXiv:1812.01599] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    I.M. Ávila, V. De Romeri, L. Duarte and J.W.F. Valle, Minimalistic scotogenic scalar dark matter, arXiv:1910.08422 [INSPIRE].

  21. [21]

    C. Arbeláez, A.E. Cárcamo Hernández, R. Cepedello, M. Hirsch and S. Kovalenko, Radiative type-I seesaw neutrino masses, Phys. Rev.D 100 (2019) 115021 [arXiv:1910.04178] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    A.E. Cárcamo Hernández, D.T. Huong and H.N. Long, A minimal model for the SM fermion flavor structure, mass hierarchy, dark matter, leptogenesis and the g − 2 anomalies, arXiv:1910.12877 [INSPIRE].

  23. [23]

    A.E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Radiatively generated hierarchy of lepton and quark masses, JHEP02 (2017) 125 [arXiv:1611.09797] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  24. [24]

    A.E. Cárcamo Hernández, S. Kovalenko, H.N. Long and I. Schmidt, A variant of 3-3-1 model for the generation of the SM fermion mass and mixing pattern, JHEP07 (2018) 144 [arXiv:1705.09169] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    A.E. Cárcamo Hernández, S. Kovalenko, R. Pasechnik and I. Schmidt, Sequentially loop-generated quark and lepton mass hierarchies in an extended Inert Higgs Doublet model, JHEP06 (2019) 056 [arXiv:1901.02764] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  26. [26]

    C.-Y. Yao and G.-J. Ding, Systematic Study of One-Loop Dirac Neutrino Masses and Viable Dark Matter Candidates, Phys. Rev.D 96 (2017) 095004 [Erratum ibid.D 98 (2018) 039901] [arXiv:1707.09786] [INSPIRE].

  27. [27]

    S. Centelles Chuliá, R. Cepedello, E. Peinado and R. Srivastava, Systematic classification of two loop d = 4 Dirac neutrino mass models and the Diracness-dark matter stability connection, JHEP10 (2019) 093 [arXiv:1907.08630] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    D. Aristizabal Sierra, A. Degee, L. Dorame and M. Hirsch, Systematic classification of two-loop realizations of the Weinberg operator, JHEP03 (2015) 040 [arXiv:1411.7038] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    S.P. Martin and D.G. Robertson, Evaluation of the general 3-loop vacuum Feynman integral, Phys. Rev.D 95 (2017) 016008 [arXiv:1610.07720] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. [30]

    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett.B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and Collider Physics, New J. Phys.17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    S. Gariazzo, P.F. de Salas and S. Pastor, Thermalisation of sterile neutrinos in the early Universe in the 3 + 1 scheme with full mixing matrix, JCAP07 (2019) 014 [arXiv:1905.11290] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    M. Lindner, M. Platscher and F.S. Queiroz, A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept.731 (2018) 1 [arXiv:1610.06587] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    Y. Cai, J. Herrero-García, M.A. Schmidt, A. Vicente and R.R. Volkas, From the trees to the forest: a review of radiative neutrino mass models, Front. Phys.5 (2017) 63 [arXiv:1706.08524] [INSPIRE].

    Article  Google Scholar 

  35. [35]

    A. Falkowski, D.M. Straub and A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology, JHEP05 (2014) 092 [arXiv:1312.5329] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    N. Kumar and S.P. Martin, Vectorlike Leptons at the Large Hadron Collider, Phys. Rev.D 92 (2015) 115018 [arXiv:1510.03456] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying to high-pTW bosons and b quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 10 (2017) 141 [arXiv:1707.03347] [INSPIRE].

  38. [38]

    ATLAS collaboration, Search for pair- and single-production of vector-like quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 98 (2018) 112010 [arXiv:1806.10555] [INSPIRE].

  39. [39]

    ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of the third-generation quarks at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 211801 [arXiv:1808.02343] [INSPIRE].

  40. [40]

    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept.641 (2016) 1 [arXiv:1603.04993] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    B. Diaz, M. Schmaltz and Y.-M. Zhong, The leptoquark Hunter’s guide: Pair production, JHEP10 (2017) 097 [arXiv:1706.05033] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    M. Schmaltz and Y.-M. Zhong, The leptoquark Hunter’s guide: large coupling, JHEP01 (2019) 132 [arXiv:1810.10017] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    N. Vignaroli, Seeking leptoquarks in the \( t\overline{t} \)plus missing energy channel at the high-luminosity LHC, Phys. Rev.D 99 (2019) 035021 [arXiv:1808.10309] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    J.M. Arnold, B. Fornal and M.B. Wise, Simplified models with baryon number violation but no proton decay, Phys. Rev.D 87 (2013) 075004 [arXiv:1212.4556] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    N. Assad, B. Fornal and B. Grinstein, Baryon Number and Lepton Universality Violation in Leptoquark and Diquark Models, Phys. Lett.B 777 (2018) 324 [arXiv:1708.06350] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    J.M. Arnold, B. Fornal and M.B. Wise, Phenomenology of scalar leptoquarks, Phys. Rev.D 88 (2013) 035009 [arXiv:1304.6119] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    O. Popov and G.A. White, One Leptoquark to unify them? Neutrino masses and unification in the light of (g − 2)μ, RD(*)and RKanomalies, Nucl. Phys.B 923 (2017) 324 [arXiv:1611.04566] [INSPIRE].

  48. [48]

    N. Bernal, A.E. Cárcamo Hernández, I. de Medeiros Varzielas and S. Kovalenko, Fermion masses and mixings and dark matter constraints in a model with radiative seesaw mechanism, JHEP05 (2018) 053 [arXiv:1712.02792] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    A.E. Cárcamo Hernández and H.N. Long, A highly predictive A4flavour 3-3-1 model with radiative inverse seesaw mechanism, J. Phys.G 45 (2018) 045001 [arXiv:1705.05246] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    H.N. Long, N.V. Hop, L.T. Hue, N.H. Thao and A.E. Cárcamo Hernández, Some phenomenological aspects of the 3-3-1 model with the Cárcamo-Kovalenko-Schmidt mechanism, Phys. Rev.D 100 (2019) 015004 [arXiv:1810.00605] [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    P. Langacker and G. Steigman, Requiem for an FCHAMP? Fractionally CHArged, Massive Particle, Phys. Rev.D 84 (2011) 065040 [arXiv:1107.3131] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev.D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information



Corresponding author

Correspondence to A.E. Cárcamo Hernández.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1911.02033

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arbeláez, C., Hernández, A.C., Cepedello, R. et al. Sequentially loop suppressed fermion masses from a single discrete symmetry. J. High Energ. Phys. 2020, 43 (2020).

Download citation


  • Beyond Standard Model
  • Neutrino Physics
  • Quark Masses and SM Parameters