Confronting dark matter co-annihilation of Inert two Higgs Doublet Model with a compressed mass spectrum

Abstract

We perform a comprehensive analysis for the light scalar dark matter (DM) in the Inert two Higgs doublet model (i2HDM) with compressed mass spectra, small mass splittings among three ℤ2 odd particles — scalar S, pseudo-scalar A, and charged Higgs H±. In such a case, the co-annihilation processes play a significant role to reduce DM relic density. As long as a co-annihilation governs the total interaction rate in the early universe, a small annihilation rate is expected to reach a correct DM relic density and its coupling λS between DM pair and Higgs boson shall be tiny. Consequently, a negligible DM-nucleon elastic scattering cross section is predicted at the tree-level. In this work, we include the one-loop quantum corrections of the DM-nucleon elastic scattering cross section. We found that the quartic self-coupling λ2 between ℤ2 odd particles indeed contributes the one-loop quantum correction and behaves non-trivially for the co-annihilation scenario. Interestingly, the parameter space, which is allowed by the current constraints considered in this study, can predict the DM mass and annihilation cross section at the present compatible with the AMS-02 antiproton excess. The parameter space can be further probed at the future high luminosity LHC.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    DAMA, LIBRA collaboration, New results from DAMA/LIBRA, Eur. Phys. J.C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].

  2. [2]

    CoGeNT collaboration, Results from a search for light-mass dark matter with a P-type point contact Germanium detector, Phys. Rev. Lett.106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].

  3. [3]

    Fermi-LAT collaboration, The Fermi Galactic Center GeV excess and implications for dark matter, Astrophys. J.840 (2017) 43 [arXiv:1704.03910] [INSPIRE].

  4. [4]

    M.-Y. Cui et al., Possible dark matter annihilation signal in the AMS-02 antiproton data, Phys. Rev. Lett.118 (2017) 191101 [arXiv:1610.03840] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    A. Cuoco, M. Krämer and M. Korsmeier, Novel dark matter constraints from antiprotons in light of AMS-02, Phys. Rev. Lett.118 (2017) 191102 [arXiv:1610.03071] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    M. Felcini, Searches for dark matter particles at the LHC, arXiv:1809.06341 [INSPIRE].

  7. [7]

    F. Richard, G. Arcadi and Y. Mambrini, Searching for dark matter at colliders, Eur. Phys. J.C 75 (2015) 171 [arXiv:1411.0088] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    T. Han, S. Mukhopadhyay and X. Wang, Electroweak dark matter at future hadron colliders, Phys. Rev.D 98 (2018) 035026 [arXiv:1805.00015] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    G. Arcadi et al., The waning of the WIMP? A review of models, searches and constraints, Eur. Phys. J.C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev.D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin and M. Tasevsky, LHC Searches for Dark Matter in Compressed Mass Scenarios: Challenges in the Forward Proton Mode, JHEP04 (2019) 010 [arXiv:1812.04886] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    N. Okada and O. Seto, Inelastic extra U(1) charged scalar dark matter, Phys. Rev.D 101 (2020) 023522 [arXiv:1908.09277] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev.D 18 (1978) 2574 [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev.D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

  15. [15]

    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev.D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

  16. [16]

    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: an archetype for dark matter, JCAP02 (2007) 028 [hep-ph/0612275] [INSPIRE].

  17. [17]

    N. Blinov, J. Kozaczuk, D.E. Morrissey and A. de la Puente, Compressing the Inert Doublet Model, Phys. Rev.D 93 (2016) 035020 [arXiv:1510.08069] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    A. Arhrib, Y.-L.S. Tsai, Q. Yuan and T.-C. Yuan, An updated analysis of Inert Higgs Doublet model in light of the recent results from LUX, PLANCK, AMS-02 and LHC, JCAP06 (2014) 030 [arXiv:1310.0358] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    J.M. Gerard and M. Herquet, A twisted custodial symmetry in the two-Higgs-doublet model, Phys. Rev. Lett.98 (2007) 251802 [hep-ph/0703051] [INSPIRE].

  20. [20]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  21. [21]

    T. Abe and R. Sato, Quantum corrections to the spin-independent cross section of the inert doublet dark matter, JHEP03 (2015) 109 [arXiv:1501.04161] [INSPIRE].

    Article  Google Scholar 

  22. [22]

    A. Goudelis, B. Herrmann and O. Stål, Dark matter in the Inert Doublet Model after the discovery of a Higgs-like boson at the LHC, JHEP09 (2013) 106 [arXiv:1303.3010] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys.B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

  24. [24]

    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: Two-Higgs-Doublet Model calculator physics and manual, Comput. Phys. Commun.181 (2010) 189 [arXiv:0902.0851] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  25. [25]

    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    A. Ilnicka, M. Krawczyk and T. Robens, Inert Doublet Model in light of LHC Run I and astrophysical data, Phys. Rev.D 93 (2016) 055026 [arXiv:1508.01671] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    E.J. Chun, Z. Kang, M. Takeuchi and Y.-L.S. Tsai, LHC τ -rich tests of lepton-specific 2HDM for (g − 2)μ , JHEP11 (2015) 099 [arXiv:1507.08067] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    Particle Data Group collaboration, Review of particle physics, Chin. Phys.C 38 (2014) 090001 [INSPIRE].

  29. [29]

    M. Aoki, S. Kanemura and H. Yokoya, Reconstruction of inert doublet scalars at the International Linear Collider, Phys. Lett.B 725 (2013) 302 [arXiv:1303.6191] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    J. Kalinowski et al., Benchmarking the Inert Doublet Model for e+ecolliders, JHEP12 (2018) 081 [arXiv:1809.07712] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    E. Dolle, X. Miao, S. Su and B. Thomas, Dilepton signals in the Inert Doublet Model, Phys. Rev.D 81 (2010) 035003 [arXiv:0909.3094] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    A. Pierce and J. Thaler, Natural dark matter from an unnatural Higgs boson and new colored particles at the TeV scale, JHEP08 (2007) 026 [hep-ph/0703056] [INSPIRE].

  33. [33]

    OPAL collaboration, Search for anomalous production of dilepton events with missing transverse momentum in e+ecollisions at \( \sqrt{s} \) = 183 Gev to 209 GeV, Eur. Phys. J.C 32 (2004) 453 [hep-ex/0309014] [INSPIRE].

  34. [34]

    L3 collaboration, Search for charginos and neutralinos in e+ecollisions at \( \sqrt{S} \) = 189 GeV, Phys. Lett.B 472 (2000) 420 [hep-ex/9910007] [INSPIRE].

  35. [35]

    E. Lundstrom, M. Gustafsson and J. Edsjo, The Inert Doublet Model and LEP II limits, Phys. Rev.D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett.122 (2019) 231801 [arXiv:1904.05105] [INSPIRE].

  37. [37]

    CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].

  38. [38]

    CMS collaboration, First constraints on invisible Higgs boson decays using \( \mathrm{t}\overline{\mathrm{t}}\mathrm{H} \)production at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-18-008 (2018).

  39. [39]

    K. Cheung, J.S. Lee and P.-Y. Tseng, New emerging results in Higgs precision analysis updates 2018 after establishment of third-generation Yukawa couplings, JHEP09 (2019) 098 [arXiv:1810.02521] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion at the High-Luminosity LHC, CMS-PAS-FTR-18-016 (2018).

  41. [41]

    A. Arhrib, R. Benbrik and N. Gaur, H → γγ in Inert Higgs Doublet Model, Phys. Rev.D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    B. Swiezewska and M. Krawczyk, Diphoton rate in the Inert Doublet Model with a 125 GeV Higgs boson, Phys. Rev.D 88 (2013) 035019 [arXiv:1212.4100] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    G. Bélanger et al., MicrOMEGAs5.0: freeze-in, Comput. Phys. Commun.231 (2018) 173 [arXiv:1801.03509] [INSPIRE].

  44. [44]

    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun.184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

  45. [45]

    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb1of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, ATLAS-CONF-2018-031 (2018).

  46. [46]

    CMS Collaboration, Measurements of Higgs boson production via gluon fusion and vector boson fusion in the diphoton decay channel at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-18-029 (2018).

  47. [47]

    ATLAS collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, JHEP01 (2018) 126 [arXiv:1711.03301] [INSPIRE].

  48. [48]

    ATLAS collaboration, Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev.D 100 (2019) 052013 [arXiv:1906.05609] [INSPIRE].

  49. [49]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    B. Dumont et al., Toward a public analysis database for LHC new physics searches using MADANALYSIS 5, Eur. Phys. J.C 75 (2015) 56 [arXiv:1407.3278] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    CMS collaboration, Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at \( \sqrt{s} \)= 13 TeV, JHEP08 (2019) 150 [arXiv:1905.13059] [INSPIRE].

  52. [52]

    ATLAS collaboration, Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev.D 97 (2018) 052010 [arXiv:1712.08119] [INSPIRE].

  53. [53]

    ATLAS collaboration, Searches for electroweak production of supersymmetric particles with compressed mass spectra in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev.D 101 (2020) 052005 [arXiv:1911.12606] [INSPIRE].

  54. [54]

    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  55. [55]

    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  56. [56]

    L. Lopez Honorez and C.E. Yaguna, The Inert Doublet Model of dark matter revisited, JHEP09 (2010) 046 [arXiv:1003.3125] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  57. [57]

    K. Cheung et al., Global study of the simplest scalar phantom dark matter model, JCAP10 (2012) 042 [arXiv:1207.4930] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    GAMBIT collaboration, Status of the scalar singlet dark matter model, Eur. Phys. J.C 77 (2017) 568 [arXiv:1705.07931] [INSPIRE].

  59. [59]

    GAMBIT collaboration, Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J.C 79 (2019) 38 [arXiv:1808.10465] [INSPIRE].

  60. [60]

    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  61. [61]

    C. Arina, F.-S. Ling and M.H.G. Tytgat, IDM and iDM or the Inert Doublet Model and inelastic Dark Matter, JCAP10 (2009) 018 [arXiv:0907.0430] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    C.-R. Chen et al., Complex scalar dark matter in the gauged two-Higgs-doublet model, Phys. Rev.D 101 (2020) 035037 [arXiv:1910.13138] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE].

  64. [64]

    The GAMBIT Dark Matter Workgroup collaboration, DarkBit: a GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J.C 77 (2017) 831 [arXiv:1705.07920] [INSPIRE].

  65. [65]

    Fermi-LAT, DES collaboration, Searching for dark matter annihilation in recently discovered Milky Way satellites with Fermi-LAT, Astrophys. J.834 (2017) 110 [arXiv:1611.03184] [INSPIRE].

  66. [66]

    L. Goodenough and D. Hooper, Possible evidence for dark matter annihilation in the Inner Milky Way from the Fermi Gamma Ray Space Telescope, arXiv:0910.2998 [INSPIRE].

  67. [67]

    D. Hooper and L. Goodenough, Dark matter annihilation in the Galactic Center as seen by the Fermi Gamma Ray Space Telescope, Phys. Lett.B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    F. Calore, I. Cholis and C. Weniger, Background model systematics for the Fermi GeV excess, JCAP03 (2015) 038 [arXiv:1409.0042] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    X. Huang, Y.-L.S. Tsai and Q. Yuan, LikeDM: likelihood calculator of dark matter detection, Comput. Phys. Commun.213 (2017) 252 [arXiv:1603.07119] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    F.S. Queiroz and C.E. Yaguna, The CTA aims at the Inert Doublet Model, JCAP02 (2016) 038 [arXiv:1511.05967] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    K. Cheung, R. Huo, J.S. Lee and Y.-L. Sming Tsai, Dark matter in split SUSY with intermediate Higgses, JHEP04 (2015) 151 [arXiv:1411.7329] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Singlet Majorana fermion dark matter: a comprehensive analysis in effective field theory, JHEP10 (2014) 155 [arXiv:1407.1859] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Effective theory of WIMP dark matter supplemented by simplified models: singlet-like Majorana fermion case, Phys. Rev.D 94 (2016) 065034 [arXiv:1604.02230] [INSPIRE].

    ADS  Google Scholar 

  74. [74]

    S. Banerjee, S. Matsumoto, K. Mukaida and Y.-L.S. Tsai, WIMP dark matter in a well-tempered regime: a case study on singlet-doublets fermionic WIMP, JHEP11 (2016) 070 [arXiv:1603.07387] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    S. Matsumoto, Y.-L.S. Tsai and P.-Y. Tseng, Light fermionic WIMP dark matter with light scalar mediator, JHEP07 (2019) 050 [arXiv:1811.03292] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman, emcee: the MCMC hammer, Publ. Astron. Soc. Pac.125 (2013) 306 [arXiv:1202.3665] [INSPIRE].

  77. [77]

    A. Bhardwaj, P. Konar, T. Mandal and S. Sadhukhan, Probing the inert doublet model using jet substructure with a multivariate analysis, Phys. Rev.D 100 (2019) 055040 [arXiv:1905.04195] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    W.A. Rolke, A.M. Lopez and J. Conrad, Limits and confidence intervals in the presence of nuisance parameters, Nucl. Instrum. Meth.A 551 (2005) 493 [physics/0403059] [INSPIRE].

  79. [79]

    LZ collaboration, LUX-ZEPLIN (LZ) Conceptual Design Report, arXiv:1509.02910 [INSPIRE].

  80. [80]

    DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP11 (2016) 017 [arXiv:1606.07001] [INSPIRE].

  81. [81]

    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev.D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].

    ADS  Google Scholar 

  82. [82]

    L. Oakes et al., Combined Dark Matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, HESS, MAGIC and VERITAS, PoS(ICRC2019)012 [arXiv:1909.06310] [INSPIRE].

  83. [83]

    M.-Y. Cui, W.-C. Huang, Y.-L.S. Tsai and Q. Yuan, Consistency test of the AMS-02 antiproton excess with direct detection data based on the effective field theory approach, JCAP11 (2018) 039 [arXiv:1805.11590] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yue-Lin Sming Tsai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1912.08875

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsai, Y.S., Lu, C. & Tran, V.Q. Confronting dark matter co-annihilation of Inert two Higgs Doublet Model with a compressed mass spectrum. J. High Energ. Phys. 2020, 33 (2020). https://doi.org/10.1007/JHEP06(2020)033

Download citation

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Higgs Physics