Advertisement

N = 4 super-Schwarzian theory on the coadjoint orbit and PSU(1,1|2)

  • Shogo Aoyama
  • Yuco Honda
Open Access
Regular Article - Theoretical Physics
  • 38 Downloads

Abstract

An N = 4 super-Schwarzian theory is formulated by the coadjoint orbit method. It is discovered that the action has symmetry under PSU(1,1|2).

Keywords

2D Gravity Differential and Algebraic Geometry Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Aoyama, Quantization of the 2d effective gravity in the geometrical formulation, Int. J. Mod. Phys. A 7 (1992) 5761 [INSPIRE].
  2. [2]
    N. Seiberg, Notes on quantum Liouville theory and quantum gravity, Prog. Theor. Phys. Suppl. 102 (1990) 319 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Alekseev and S.L. Shatashvili, Path integral quantization of the coadjoint orbits of the Virasoro group and 2D gravity, Nucl. Phys. B 323 (1989) 719 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Stanford and E. Witten, Fermionic localization of the Schwarzian theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric SYK models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].
  6. [6]
    T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the conformal bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Aoyama, 2d effective supergravity on the coadjoint orbit of the superconformal group, Phys. Lett. B 228 (1989) 355 [INSPIRE].
  8. [8]
    G.W. Delius, P. van Nieuwenhuizen and V.G.J. Rodgers, The method of coadjoint orbits: an algorithm for the construction of invariant actions, Int. J. Mod. Phys. A 5 (1990) 3943 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    H. Aratyn, E. Nissimov, S. Pacheva and A.H. Zimerman, Symplectic actions on coadjoint orbits, Phys. Lett. B 240 (1990) 127 [INSPIRE].
  10. [10]
    S. Aoyama, The classical exchange algebra of the 2d effective (2, 0) supergravity in the geometrical formulation, Mod. Phys. Lett. A 6 (1991) 2069 [INSPIRE].
  11. [11]
    S. Aoyama, Topological gravity with exchange algebra, Phys. Lett. B 324 (1994) 303 [hep-th/9311054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    T. Eguchi and A. Taormina, Character formulas for the N = 4 superconformal algebra, Phys. Lett. B 200 (1988) 315 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    J.D. Cohn, N = 2 super-Riemann surfaces, Nucl. Phys. B 284 (1987) 349 [INSPIRE].
  14. [14]
    K. Schoutens, O(N)-extended superconformal field theory in superspace, Nucl. Phys. B 295 (1988) 634 [INSPIRE].
  15. [15]
    S. Matsuda and T. Uematsu, Superschwarzian derivatives in N = 4 SU(2)-extended superconformal algebras, Mod. Phys. Lett. A 5 (1990) 841 [INSPIRE].
  16. [16]
    S. Aoyama and Y. Honda, Spin-chain with PSU(2|2) ⊗ U(1)3 and non-linear σ-model with D(2, 1; γ), Phys. Lett. B 743 (2015) 531 [arXiv:1502.03684] [INSPIRE].
  17. [17]
    S. Aoyama, PSU(2, 2|4) exchange algebra of N = 4 superconformal multiplets, arXiv:1412.7808 [INSPIRE].
  18. [18]
    Y. Honda, The Killing vectors on PSU(2|2)/{SU(2) ⊗ U(1)} and D(2, 1; γ)/{SU(2)⊗ SU(2) ⊗ U(1)}, https://doi.org/10.14945/00008095, Shizuoka University, Shizuoka Japan, (2015).
  19. [19]
    E. Witten, Coadjoint orbits of the Virasoro group, Commun. Math. Phys. 114 (1988) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    I. Bakas, Conformal invariance, the KdV equation and coadjoint orbits of the Virasoro algebra, Nucl. Phys. B 302 (1988) 189 [INSPIRE].
  21. [21]
    S. Aoyama, N = 4 super-Liouville theory on the coadjoint orbit and PSU(1, 1|2), in preparation.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsShizuoka UniversityShizuokaJapan

Personalised recommendations