Quasi-local energy and compactification

  • Enrique Alvarez
  • Jesus Anero
  • Guillermo Milans del Bosch
  • Raquel Santos-Garcia
Open Access
Regular Article - Theoretical Physics


Based on the quasi-local energy definition of Brown and York, we compute the integral of the trace of the extrinsic curvature over a codimension-2 hypersurface. In particular, we study the difference between the uncompactified Minkowski spacetime and the toroidal Kaluza-Klein compactification. For the latter, we find that this quantity interpolates between zero and the value for the uncompactified spacetime, as the size of the compact dimension increases. Thus, the quasi-local energy is able to discriminate between the two spacetimes.


Classical Theories of Gravity Field Theories in Higher Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Alvarez, Quantum gravity: a pedagogical introduction to some recent results, Rev. Mod. Phys. 61 (1989) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].
  3. [3]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21.Google Scholar
  4. [4]
    T. Kaluza, Zum Unitätsproblem der Physik, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1921 (1921) 966 [arXiv:1803.08616] [INSPIRE].
  5. [5]
    O. Klein, Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English), Z. Phys. 37 (1926) 895 [Surveys High Energ. Phys. 5 (1986) 241] [INSPIRE].
  6. [6]
    E. Witten, Instability of the Kaluza-Klein Vacuum, Nucl. Phys. B 195 (1982) 481 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    L.B. Szabados, Quasi-Local Energy-Momentum and Angular Momentum in General Relativity, Living Rev. Rel. 12 (2009) 4 [INSPIRE].CrossRefzbMATHGoogle Scholar
  8. [8]
    S. Hawking, Gravitational radiation in an expanding universe, J. Math. Phys. 9 (1968) 598 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Penrose, Quasi-Local Mass and Angular Momentum in General Relativity, Proc. Roy. Soc. Lond. A 381 (1982) 53.Google Scholar
  10. [10]
    R. Bartnik, New definition of quasilocal mass, Phys. Rev. Lett. 62 (1989) 2346 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
  12. [12]
    S.A. Hayward, Quasilocal gravitational energy, Phys. Rev. D 49 (1994) 831 [gr-qc/9303030] [INSPIRE].
  13. [13]
    C.-C.M. Liu and S.-T. Yau, Positivity of Quasilocal Mass, Phys. Rev. Lett. 90 (2003) 231102 [gr-qc/0303019] [INSPIRE].
  14. [14]
    M.-T. Wang and S.-T. Yau, Quasilocal mass in general relativity, Phys. Rev. Lett. 102 (2009) 021101 [arXiv:0804.1174] [INSPIRE].
  15. [15]
    L.P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton U.S.A. (1964).Google Scholar
  16. [16]
    R.H. Brandenberger and C. Vafa, Superstrings in the Early Universe, Nucl. Phys. B 316 (1989) 391 [INSPIRE].
  17. [17]
    S. Watson and R. Brandenberger, Stabilization of extra dimensions at tree level, JCAP 11 (2003) 008 [hep-th/0307044] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G.T. Horowitz and B.G. Schmidt, Note on gravitational energy, Proc. Roy. Soc. Lond. A 381 (1982) 215.Google Scholar
  19. [19]
    L.E. Ibanez and A.M. Uranga, String theory and particle physics: An introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Enrique Alvarez
    • 1
  • Jesus Anero
    • 1
  • Guillermo Milans del Bosch
    • 1
  • Raquel Santos-Garcia
    • 1
  1. 1.Departamento de Física Teórica and Instituto de Física TeóricaIFT-UAM/CSIC, Universidad AutónomaMadridSpain

Personalised recommendations