Leading QCD-induced four-loop contributions to the β-function of the Higgs self-coupling in the SM and vacuum stability

Open Access
Regular Article - Theoretical Physics


We present analytical results for the leading top-Yukawa and QCD contribution to the β-function for the Higgs self-coupling λ of the Standard Model at four-loop level, namely the part ∝ y t 4 g s 6 independently confirming a result given in [1]. We also give the contribution ∝ y t 2 g s 6 of the anomalous dimension of the Higgs field as well as the terms ∝ y t g s 8 to the top-Yukawa β-function which can also be derived from the anomalous dimension of the top quark mass. We compare the results with the RG functions of the correlators of two and four scalar currents in pure QCD and find a new relation between the anomalous dimension γ 0 of the QCD vacuum energy and the anomalous dimension γ m SS appearing in the RG equation of the correlator of two scalar currents. Together with the recently computed top-Yukawa and QCD contributions to β gs [2, 3] the β-functions presented here constitute the leading four-loop contributions to the evolution of the Higgs self-coupling. A numerical estimate of these terms at the scale of the top-quark mass is presented as well as an analysis of the impact on the evolution of λ up to the Planck scale and the vacuum stability problem.


Higgs Physics Perturbative QCD Renormalization Group 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.P. Martin, Four-loop standard model effective potential at leading order in QCD, Phys. Rev. D 92 (2015) 054029 [arXiv:1508.00912] [INSPIRE].ADSGoogle Scholar
  2. [2]
    A.V. Bednyakov and A.F. Pikelner, Four-loop strong coupling β-function in the standard model, arXiv:1508.02680 [INSPIRE].
  3. [3]
    M.F. Zoller, Top-Yukawa effects on the β-function of the strong coupling in the SM at four-loop level, JHEP 02 (2016) 095 [arXiv:1508.03624] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Bezrukov and M. Shaposhnikov, Standard model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Z.-z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013 [arXiv:1112.3112] [INSPIRE].ADSGoogle Scholar
  8. [8]
    F. Bezrukov, M.Yu. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].
  9. [9]
    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K.G. Chetyrkin and M.F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M.F. Zoller, Vacuum stability in the SM and the three-loop β-function for the Higgs self-interaction, Subnucl. Ser. 50 (2014) 557 [arXiv:1209.5609] [INSPIRE].Google Scholar
  12. [12]
    I. Masina, Higgs boson and top quark masses as tests of electroweak vacuum stability, Phys. Rev. D 87 (2013) 053001 [arXiv:1209.0393] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M.F. Zoller, Standard model β-functions to three-loop order and vacuum stability, arXiv:1411.2843 [INSPIRE].
  14. [14]
    M.F. Zoller, Three-loop β-function for the Higgs self-coupling, PoS (LL2014) 014 [arXiv:1407.6608] [INSPIRE].
  15. [15]
    M. Zoller, β-function for the Higgs self-interaction in the Standard Model at three-loop level, PoS (EPS-HEP 2013) 322 [arXiv:1311.5085] [INSPIRE].
  16. [16]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner and O.L. Veretin, Stability of the electroweak vacuum: gauge independence and advanced precision, Phys. Rev. Lett. 115 (2015) 201802 [arXiv:1507.08833] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N.V. Krasnikov, Restriction of the fermion mass in gauge theories of weak and electromagnetic interactions, Yad. Fiz. 28 (1978) 549 [INSPIRE].Google Scholar
  19. [19]
    H.D. Politzer and S. Wolfram, Bounds on particle masses in the Weinberg-Salam model, Phys. Lett. B 82 (1979) 242 [Erratum ibid. B 83 (1979) 421] [INSPIRE].
  20. [20]
    P.Q. Hung, Vacuum instability and new constraints on fermion masses, Phys. Rev. Lett. 42 (1979) 873 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Bobrowski, G. Chalons, W.G. Hollik and U. Nierste, Vacuum stability of the effective Higgs potential in the minimal supersymmetric standard model, Phys. Rev. D 90 (2014) 035025 [arXiv:1407.2814] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  23. [23]
    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The Effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].
  27. [27]
    G. Altarelli and G. Isidori, Lower limit on the higgs mass in the standard model: An update, Phys. Lett. B 337 (1994) 141.ADSCrossRefGoogle Scholar
  28. [28]
    B.A. Kniehl, A.F. Pikelner and O.L. Veretin, Two-loop electroweak threshold corrections in the standard model, Nucl. Phys. B 896 (2015) 19 [arXiv:1503.02138] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge coupling β-functions in the standard model to three loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Renormalization constants and β-functions for the gauge couplings of the Standard Model to three-loop order, Phys. Rev. D 86 (2012) 096008 [arXiv:1208.3357] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Anomalous dimensions of gauge fields and gauge coupling β-functions in the standard model at three loops, JHEP 01 (2013) 017 [arXiv:1210.6873] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    K.G. Chetyrkin and M.F. Zoller, β-function for the Higgs self-interaction in the Standard Model at three-loop level, JHEP 04 (2013) 091 [arXiv:1303.2890] [INSPIRE].
  33. [33]
    A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Yukawa coupling β-functions in the standard model at three loops, Phys. Lett. B 722 (2013) 336 [arXiv:1212.6829] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Higgs self-coupling β-function in the standard model at three loops, Nucl. Phys. B 875 (2013) 552 [arXiv:1303.4364] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Three-loop Higgs self-coupling β-function in the standard model with complex Yukawa matrices, Nucl. Phys. B 879 (2014) 256 [arXiv:1310.3806] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].
  37. [37]
    M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].
  38. [38]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, in 6th International Workshop on New Computing Techniques in Physics Research: Software Engineering, Artificial Intelligence Neural Nets, Genetic Algorithms, Symbolic Algebra, Automatic Calculation (AIHENP 99), April 12-16, Heraklion, Crete, Greece (1999), hep-ph/9905298 [INSPIRE].
  40. [40]
    R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of order αα s to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].
  41. [41]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  42. [42]
    M. Tentyukov and J.A.M. Vermaseren, The multithreaded version of FORM, Comput. Phys. Commun. 181 (2010) 1419 [hep-ph/0702279] [INSPIRE].
  43. [43]
    T. Van Ritbergen, A. Schellekens and J. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41.ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    M. Misiak and M. Münz, Two loop mixing of dimension five flavor changing operators, Phys. Lett. B 344 (1995) 308 [hep-ph/9409454] [INSPIRE].
  45. [45]
    K.G. Chetyrkin, M. Misiak and M. Münz, β-functions and anomalous dimensions up to three loops, Nucl. Phys. B 518 (1998) 473 [hep-ph/9711266] [INSPIRE].
  46. [46]
    M. Steinhauser, MATAD: a program package for the computation of MAssive TADpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [INSPIRE].
  47. [47]
    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].
  50. [50]
    K.G. Chetyrkin, Quark mass anomalous dimension to O(α S4), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].
  51. [51]
    K.G. Chetyrkin, Correlator of the quark scalar currents and Γtot(Hhadrons) at O(α S3) in pQCD, Phys. Lett. B 390 (1997) 309 [hep-ph/9608318] [INSPIRE].
  52. [52]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Quark mass and field anomalous dimensions to \( \mathcal{O}\left({\alpha}_s^5\right) \), JHEP 10 (2014) 076 [arXiv:1402.6611] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Scalar correlator at O(α s4), Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [INSPIRE].
  54. [54]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].
  57. [57]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α S3) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
  58. [58]
    J.H. Lowenstein, Differential vertex operations in Lagrangian field theory, Commun. Math. Phys. 24 (1971) 1 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    Y.-M.P. Lam, Perturbation Lagrangian theory for scalar fields: Ward-Takahasi identity and current algebra, Phys. Rev. D 6 (1972) 2145 [INSPIRE].ADSGoogle Scholar
  60. [60]
    P. Breitenlohner and D. Maison, Dimensional renormalization and the action principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    V.P. Spiridonov and K.G. Chetyrkin, Nonleading mass corrections and renormalization of the operators mp \( \overline{s} \) iψ and g2(μν), Sov. J. Nucl. Phys. 47 (1988) 522 [INSPIRE].Google Scholar
  62. [62]
    V. P. Spiridonov, Anomalous dimension of G μν2 and β function, preprint IYaI-P-0378 (1984).Google Scholar
  63. [63]
    K.G. Chetyrkin and J.H. Kuhn, Quartic mass corrections to R had, Nucl. Phys. B 432 (1994) 337 [hep-ph/9406299] [INSPIRE].
  64. [64]
    Y. Schröder, Automatic reduction of four loop bubbles, Nucl. Phys. Proc. Suppl. 116 (2003) 402 [hep-ph/0211288] [INSPIRE].
  65. [65]
    F. Di Renzo, A. Mantovi, V. Miccio and Y. Schröder, 3D lattice QCD free energy to four loops, JHEP 05 (2004) 006 [hep-lat/0404003] [INSPIRE].
  66. [66]
    K.G. Chetyrkin, unpublished (1998).Google Scholar
  67. [67]
    K.G. Chetyrkin, R.V. Harlander and J.H. Kuhn, Quartic mass corrections to R had at \( \mathcal{O}\left({\alpha}_s^3\right) \), Nucl. Phys. B 586 (2000) 56 [Erratum ibid. B 634 (2002) 413] [hep-ph/0005139] [INSPIRE].
  68. [68]
    C. Sturm, Moments of heavy quark current correlators at four-loop order in perturbative QCD, JHEP 09 (2008) 075 [arXiv:0805.3358] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Maier, P. Maierhofer, P. Marquard and A.V. Smirnov, Low energy moments of heavy quark current correlators at four loops, Nucl. Phys. B 824 (2010) 1 [arXiv:0907.2117] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  70. [70]
    ATLAS, CMS collaboration, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  71. [71]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  72. [72]
    ATLAS, CDF, CMS, D0 collaboration, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].
  73. [73]
    I.I.Y. Bigi, M.A. Shifman, N.G. Uraltsev and A.I. Vainshtein, The pole mass of the heavy quark. Perturbation theory and beyond, Phys. Rev. D 50 (1994) 2234 [hep-ph/9402360] [INSPIRE].
  74. [74]
    M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443] [INSPIRE].
  75. [75]
    A.H. Hoang, A. Jain, I. Scimemi and I.W. Stewart, Infrared renormalization group flow for heavy quark masses, Phys. Rev. Lett. 101 (2008) 151602 [arXiv:0803.4214] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S. Moch et al., High precision fundamental constants at the TeV scale, arXiv:1405.4781 [INSPIRE].
  77. [77]
    S. Moch, Precision determination of the top-quark mass, PoS(LL2014)054 [arXiv:1408.6080] [INSPIRE].
  78. [78]
    K.G. Chetyrkin and M.F. Zoller, Erratum: β-function for the Higgs self-interaction in the Standard Model at three-loop level, JHEP 09 (2013) 155.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institut für PhysikUniversity of Zurich (UZH)ZurichSwitzerland

Personalised recommendations