Baryon as impurity for phase transition in string landscape

  • Aya Kasai
  • Yuichiro Nakai
  • Yutaka Ookouchi
Open Access
Regular Article - Theoretical Physics


We consider a decay of a false vacuum in flux compactifications of type IIB string theory and study a catalytic effect for a phase transition induced by a new type of impurities. We concentrate on the large N dual of a D5-brane/anti-D5-brane system which has a rich vacuum structure. We show that D3-branes wrapping the 3-cycles can form a baryon bound state with a monopole. We find that these baryon-like objects can make the lifetime of the metastable vacuum shorter.


Brane Dynamics in Gauge Theories D-branes Flux compactifications Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P.J. Steinhardt, Monopole and Vortex Dissociation and Decay of the False Vacuum, Nucl. Phys. B 190 (1981) 583 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P.J. Steinhardt, Monopole Dissociation in the Early Universe, Phys. Rev. D 24 (1981) 842 [INSPIRE].ADSGoogle Scholar
  3. [3]
    Y. Hosotani, Impurities in the Early Universe, Phys. Rev. D 27 (1983) 789 [INSPIRE].ADSGoogle Scholar
  4. [4]
    U.A. Yajnik, Phase transition induced by cosmic strings, Phys. Rev. D 34 (1986) 1237 [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    B. Kumar and U.A. Yajnik, On stability of false vacuum in supersymmetric theories with cosmic strings, Phys. Rev. D 79 (2009) 065001 [arXiv:0807.3254] [INSPIRE].ADSGoogle Scholar
  6. [6]
    B. Kumar and U. Yajnik, Graceful exit via monopoles in a theory with O’Raifeartaigh type supersymmetry breaking, Nucl. Phys. B 831 (2010) 162 [arXiv:0908.3949] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    B. Kumar, M.B. Paranjape and U.A. Yajnik, Fate of the false monopoles: Induced vacuum decay, Phys. Rev. D 82 (2010) 025022 [arXiv:1006.0693] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Eto, Y. Hamada, K. Kamada, T. Kobayashi, K. Ohashi and Y. Ookouchi, Cosmic R-string, R-tube and Vacuum Instability, JHEP 03 (2013) 159 [arXiv:1211.7237] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Kamada, T. Kobayashi, K. Ohashi and Y. Ookouchi, Cosmic R-string in thermal history, JHEP 05 (2013) 091 [arXiv:1303.2740] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    T. Hiramatsu, M. Eto, K. Kamada, T. Kobayashi and Y. Ookouchi, Instability of colliding metastable strings, JHEP 01 (2014) 165 [arXiv:1304.0623] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B.-H. Lee, W. Lee, R. MacKenzie, M.B. Paranjape, U.A. Yajnik and D.-h. Yeom, Tunneling decay of false vortices, Phys. Rev. D 88 (2013) 085031 [arXiv:1308.3501] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [INSPIRE].
  14. [14]
    S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  16. [16]
    S. Kachru and J. McGreevy, Supersymmetric three cycles and supersymmetry breaking, Phys. Rev. D 61 (2000) 026001 [hep-th/9908135] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    C. Vafa, Superstrings and topological strings at large-N, J. Math. Phys. 42 (2001) 2798 [hep-th/0008142] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    R. Argurio, M. Bertolini, S. Franco and S. Kachru, Gauge/gravity duality and meta-stable dynamical supersymmetry breaking, JHEP 01 (2007) 083 [hep-th/0610212] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    M. Aganagic, C. Beem, J. Seo and C. Vafa, Geometrically Induced Metastability and Holography, Nucl. Phys. B 789 (2008) 382 [hep-th/0610249] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    H. Ooguri and Y. Ookouchi, Landscape of supersymmetry breaking vacua in geometrically realized gauge theories, Nucl. Phys. B 755 (2006) 239 [hep-th/0606061] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    R. Kitano, H. Ooguri and Y. Ookouchi, Direct Mediation of Meta-Stable Supersymmetry Breaking, Phys. Rev. D 75 (2007) 045022 [hep-ph/0612139] [INSPIRE].
  23. [23]
    R. Kitano, H. Ooguri and Y. Ookouchi, Supersymmetry Breaking and Gauge Mediation, Ann. Rev. Nucl. Part. Sci. 60 (2010) 491 [arXiv:1001.4535] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    H. Ooguri and Y. Ookouchi, Meta-Stable Supersymmetry Breaking Vacua on Intersecting Branes, Phys. Lett. B 641 (2006) 323 [hep-th/0607183] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    S. Franco, I. Garcia-Etxebarria and A.M. Uranga, Non-supersymmetric meta-stable vacua from brane configurations, JHEP 01 (2007) 085 [hep-th/0607218] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    I. Bena, E. Gorbatov, S. Hellerman, N. Seiberg and D. Shih, A Note on (Meta)stable Brane Configurations in MQCD, JHEP 11 (2006) 088 [hep-th/0608157] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    R. Tatar and B. Wetenhall, Metastable Vacua, Geometrical Engineering and MQCD Transitions, JHEP 02 (2007) 020 [hep-th/0611303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Kasai and Y. Ookouchi, Decay of False Vacuum via Fuzzy Monopole in String Theory, Phys. Rev. D 91 (2015) 126002 [arXiv:1502.01544] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Kasai and Y. Ookouchi, Gravitational Correction to Fuzzy String in Metastable Brane Configuration, JHEP 06 (2015) 098 [arXiv:1504.00479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    F. Cachazo, K.A. Intriligator and C. Vafa, A large-N duality via a geometric transition, Nucl. Phys. B 603 (2001) 3 [hep-th/0103067] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    J.J. Heckman, J. Seo and C. Vafa, Phase Structure of a Brane/Anti-Brane System at Large-N , JHEP 07 (2007) 073 [hep-th/0702077] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    F. Cachazo, N. Seiberg and E. Witten, Chiral rings and phases of supersymmetric gauge theories, JHEP 04 (2003) 018 [hep-th/0303207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    C.-h. Ahn, B. Feng, Y. Ookouchi and M. Shigemori, Supersymmetric gauge theories with flavors and matrix models, Nucl. Phys. B 698 (2004) 3 [hep-th/0405101] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    R. Dijkgraaf and C. Vafa, Matrix models, topological strings and supersymmetric gauge theories, Nucl. Phys. B 644 (2002) 3 [hep-th/0206255] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    R. Dijkgraaf and C. Vafa, On geometry and matrix models, Nucl. Phys. B 644 (2002) 21 [hep-th/0207106] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    R. Dijkgraaf and C. Vafa, A perturbative window into nonperturbative physics, hep-th/0208048 [INSPIRE].
  38. [38]
    A.R. Frey, M. Lippert and B. Williams, The fall of stringy de Sitter, Phys. Rev. D 68 (2003) 046008 [hep-th/0305018] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  39. [39]
    C.M. Brown and O. DeWolfe, Brane/flux annihilation transitions and nonperturbative moduli stabilization, JHEP 05 (2009) 018 [arXiv:0901.4401] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    I. Bena, M. Graña, S. Kuperstein and S. Massai, Giant Tachyons in the Landscape, JHEP 02 (2015) 146 [arXiv:1410.7776] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    U.H. Danielsson and T. Van Riet, Fatal attraction: more on decaying anti-branes, JHEP 03 (2015) 087 [arXiv:1410.8476] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  42. [42]
    F.F. Gautason, B. Truijen and T. Van Riet, The many faces of brane-flux annihilation, JHEP 10 (2015) 152 [arXiv:1505.00159] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  45. [45]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  47. [47]
    K. Hashimoto, Dynamical decay of brane anti-brane and dielectric brane, JHEP 07 (2002) 035 [hep-th/0204203] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    Y. Hyakutake, Torus-like dielectric D2-brane, JHEP 05 (2001) 013 [hep-th/0103146] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    D.K. Park, S. Tamarian, Y.G. Miao and H.J.W. Muller-Kirsten, Tunneling of Born-Infeld strings to D2-branes, Nucl. Phys. B 606 (2001) 84 [hep-th/0011116] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    D.K. Park, S. Tamarian and H.J.W. Muller-Kirsten, The stability of D2-branes in the presence of an RR field, JHEP 05 (2002) 009 [hep-th/0012108] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    H. Ooguri, Y. Ookouchi and C.-S. Park, Metastable Vacua in Perturbed Seiberg-Witten Theories, Adv. Theor. Math. Phys. 12 (2008) 405 [arXiv:0704.3613] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    R. Auzzi and E. Rabinovici, On metastable vacua in perturbed N = 2 theories, JHEP 08 (2010) 044 [arXiv:1006.0637] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    J. Marsano, H. Ooguri, Y. Ookouchi and C.-S. Park, Metastable Vacua in Perturbed Seiberg-Witten Theories. Part 2. Fayet-Iliopoulos Terms and Kähler Normal Coordinates, Nucl. Phys. B 798 (2008) 17 [arXiv:0712.3305] [INSPIRE].
  54. [54]
    G. Pastras, Non supersymmetric metastable vacua in \( \mathcal{N}=2 \) SYM softly broken to \( \mathcal{N}=2 \), JHEP 10 (2013) 060 [arXiv:0705.0505] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsKyushu UniversityFukuokaJapan
  2. 2.Department of PhysicsHarvard UniversityCambridgeU.S.A.
  3. 3.Faculty of Arts and ScienceKyushu UniversityFukuokaJapan

Personalised recommendations