Advertisement

New limits on light hidden sectors from fixed-target experiments

  • David E. Morrissey
  • Andrew P. Spray
Open Access
Article

Abstract

New physics can be light if it is hidden, coupling very weakly to the Standard Model. In this work we investigate the discovery prospects of Abelian hidden sectors in lower-energy fixed-target and high-precision experiments. We focus on a minimal supersymmetric realization consisting of an Abelian vector multiplet, coupled to hypercharge by kinetic mixing, and a pair of chiral Higgs multiplets. This simple theory can give rise to a broad range of experimental signals, including both commonly-studied patterns of hidden vector decay as well as new and distinctive hidden sector cascades. We find limits from the production of hidden states other than the vector itself. In particular, we show that if the hidden Abelian symmetry is higgsed, and the corresponding hidden Higgs boson has visible decays, it severely restricts the ability of the hidden sector to explain the anomalous muon magnetic moment.

Keywords

Beyond Standard Model Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Essig et al., Working group report: new light weakly coupled particles, arXiv:1311.0029 [INSPIRE].
  2. [2]
    J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J.L. Hewett et al., Fundamental physics at the intensity frontier, arXiv:1205.2671 [INSPIRE].
  4. [4]
    B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSGoogle Scholar
  5. [5]
    R. Foot and X.-G. He, Comment on ZZmixing in extended gauge theories, Phys. Lett. B 267 (1991) 509 [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].ADSGoogle Scholar
  7. [7]
    P. Arias et al., WISPy cold dark matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].ADSGoogle Scholar
  8. [8]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  9. [9]
    N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Katz and R. Sundrum, Breaking the dark force, JHEP 06 (2009) 003 [arXiv:0902.3271] [INSPIRE].ADSGoogle Scholar
  12. [12]
    D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in LARGE volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Essig, J. Kaplan, P. Schuster and N. Toro, On the origin of light dark matter species, submitted to Phys. Rev. D (2010), arXiv:1004.0691 [INSPIRE].
  15. [15]
    S. Andreas, M.D. Goodsell and A. Ringwald, Dark matter and dark forces from a supersymmetric hidden sector, Phys. Rev. D 87 (2013) 025007 [arXiv:1109.2869] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].ADSGoogle Scholar
  17. [17]
    B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].ADSGoogle Scholar
  22. [22]
    E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, New electron beam-dump experiments to search for MeV to few-GeV dark matter, Phys. Rev. D 88 (2013) 114015 [arXiv:1307.6554] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M.D. Diamond and P. Schuster, Searching for light dark matter with the SLAC millicharge experiment, Phys. Rev. Lett. 111 (2013) 221803 [arXiv:1307.6861] [INSPIRE].ADSGoogle Scholar
  24. [24]
    R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining light dark matter with low-energy e + e colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Schuster, N. Toro and I. Yavin, Terrestrial and solar limits on long-lived particles in a dark sector, Phys. Rev. D 81 (2010) 016002 [arXiv:0910.1602] [INSPIRE].ADSGoogle Scholar
  26. [26]
    Y.F. Chan, M. Low, D.E. Morrissey and A.P. Spray, LHC signatures of a minimal supersymmetric hidden valley, JHEP 05 (2012) 155 [arXiv:1112.2705] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  28. [28]
    W.-F. Chang, J.N. Ng and J.M.S. Wu, A very narrow shadow extra Z-boson at colliders, Phys. Rev. D 74 (2006) 095005 [Erratum ibid. D 79 (2009) 039902] [hep-ph/0608068] [INSPIRE].
  29. [29]
    E.J. Chun, J.-C. Park and S. Scopel, Dark matter and a new gauge boson through kinetic mixing, JHEP 02 (2011) 100 [arXiv:1011.3300] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].MathSciNetGoogle Scholar
  31. [31]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  32. [32]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark side of Higgs diphoton decays and muon g − 2, Phys. Rev. D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].ADSGoogle Scholar
  33. [33]
    G.F. Giudice, P. Paradisi and M. Passera, Testing new physics with the electron g − 2, JHEP 11 (2012) 113 [arXiv:1208.6583] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Endo, K. Hamaguchi and G. Mishima, Constraints on hidden photon models from electron g − 2 and hydrogen spectroscopy, Phys. Rev. D 86 (2012) 095029 [arXiv:1209.2558] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].ADSGoogle Scholar
  36. [36]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order QED contribution to the electron g − 2 and an improved value of the fine structure constant, Phys. Rev. Lett. 109 (2012) 111807 [arXiv:1205.5368] [INSPIRE].ADSGoogle Scholar
  37. [37]
    R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez and F. Biraben, New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett. 106 (2011) 080801 [arXiv:1012.3627] [INSPIRE].ADSGoogle Scholar
  38. [38]
    BaBar collaboration, B. Aubert et al., Search for dimuon decays of a light scalar in radiative transitions τ 3SγA 0, arXiv:0902.2176 [INSPIRE].
  39. [39]
    BaBar collaboration, B. Aubert et al., Search for dimuon decays of a light scalar boson in radiative transitions \( \varUpsilon \)γA 0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [INSPIRE].ADSGoogle Scholar
  40. [40]
    N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e + e colliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [INSPIRE].ADSGoogle Scholar
  41. [41]
    F. Archilli et al., Search for a vector gauge boson in ϕ meson decays with the KLOE detector, Phys. Lett. B 706 (2012) 251 [arXiv:1110.0411] [INSPIRE].ADSGoogle Scholar
  42. [42]
    KLOE-2 collaboration, D. Babusci et al., Limit on the production of a light vector gauge boson in ϕ meson decays with the KLOE detector, Phys. Lett. B 720 (2013) 111 [arXiv:1210.3927] [INSPIRE].ADSGoogle Scholar
  43. [43]
    WASA-at-COSY collaboration, P. Adlarson et al., Search for a dark photon in the π 0e + e γ decay, Phys. Lett. B 726 (2013) 187 [arXiv:1304.0671] [INSPIRE].ADSGoogle Scholar
  44. [44]
    B. Batell, M. Pospelov and A. Ritz, Multi-lepton signatures of a hidden sector in rare B decays, Phys. Rev. D 83 (2011) 054005 [arXiv:0911.4938] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J.D. Clarke, R. Foot and R.R. Volkas, Phenomenology of a very light scalar (100 MeV < m h < 10 GeV) mixing with the SM Higgs, JHEP 02 (2014) 123 [arXiv:1310.8042] [INSPIRE].ADSGoogle Scholar
  46. [46]
    Y.G. Aditya, K.J. Healey and A.A. Petrov, Searching for super-WIMPs in leptonic heavy meson decays, Phys. Lett. B 710 (2012) 118 [arXiv:1201.1007] [INSPIRE].ADSGoogle Scholar
  47. [47]
    BaBar collaboration, B. Aubert et al., Search for invisible decays of a light scalar in radiative transitions υ 3SγA 0, arXiv:0808.0017 [INSPIRE].
  48. [48]
    E787 collaboration, S. Adler et al., Further search for the decay K +π + νn¯u in the momentum region P < 195 MeV/c, Phys. Rev. D 70 (2004) 037102 [hep-ex/0403034] [INSPIRE].ADSGoogle Scholar
  49. [49]
    BNL-E949 collaboration, A.V. Artamonov et al., Study of the decay K +π + νn¯u in the momentum region 140 < P (π) < 199 MeV/c, Phys. Rev. D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].ADSGoogle Scholar
  50. [50]
    BaBar collaboration, P. Harrison and H. R. Quinn, The BABAR physics book: physics at an asymmetric B factory, SLAC-R-0504 (1998) [INSPIRE].
  51. [51]
    R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].ADSGoogle Scholar
  52. [52]
    BaBar collaboration, B. Aubert et al., Search for a narrow resonance in e + e to four lepton final states, arXiv:0908.2821 [INSPIRE].
  53. [53]
    BaBar collaboration, J.P. Lees et al., Search for low-mass dark-sector Higgs bosons, Phys. Rev. Lett. 108 (2012) 211801 [arXiv:1202.1313] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S. Chang, A. Pierce and N. Weiner, Momentum dependent dark matter scattering, JCAP 01 (2010) 006 [arXiv:0908.3192] [INSPIRE].ADSGoogle Scholar
  57. [57]
    P. Cushman et al., Working group report: WIMP dark matter direct detection, arXiv:1310.8327 [INSPIRE].
  58. [58]
    R. Essig, J. Mardon and T. Volansky, Direct detection of sub-GeV dark matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].ADSGoogle Scholar
  59. [59]
    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First direct detection limits on sub-GeV dark matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].ADSGoogle Scholar
  60. [60]
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].ADSGoogle Scholar
  61. [61]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].ADSGoogle Scholar
  62. [62]
    W. Hu and J. Silk, Thermalization constraints and spectral distortions for massive unstable relic particles, Phys. Rev. Lett. 70 (1993) 2661 [INSPIRE].ADSGoogle Scholar
  63. [63]
    R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining light dark matter with diffuse X-ray and γ-ray observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].ADSGoogle Scholar
  64. [64]
    M. Pospelov and J. Pradler, Metastable GeV-scale particles as a solution to the cosmological lithium problem, Phys. Rev. D 82 (2010) 103514 [arXiv:1006.4172] [INSPIRE].ADSGoogle Scholar
  65. [65]
    J.B. Dent, F. Ferrer and L.M. Krauss, Constraints on light hidden sector gauge bosons from supernova cooling, arXiv:1201.2683 [INSPIRE].
  66. [66]
    H.K. Dreiner, J.-F. Fortin, C. Hanhart and L. Ubaldi, Supernova constraints on MeV dark sectors from e + e annihilations, Phys. Rev. D 89 (2014) 105015 [arXiv:1310.3826] [INSPIRE].ADSGoogle Scholar
  67. [67]
    S. Andreas, C. Niebuhr and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev. D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A1 collaboration, H. Merkel et al., Search for light gauge bosons of the dark sector at the Mainz microtron, Phys. Rev. Lett. 106 (2011) 251802 [arXiv:1101.4091] [INSPIRE].ADSGoogle Scholar
  69. [69]
    APEX collaboration, S. Abrahamyan et al., Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett. 107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].ADSGoogle Scholar
  70. [70]
    S. Andreas, Hidden photons in beam dump experiments and in connection with dark matter, Frascati Phys. Ser. 56 (2012) 23 [arXiv:1212.4520] [INSPIRE].Google Scholar
  71. [71]
    R. Essig, P. Schuster, N. Toro and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson A decaying to e + e , JHEP 02 (2011) 009 [arXiv:1001.2557] [INSPIRE].ADSGoogle Scholar
  72. [72]
    M. Freytsis, G. Ovanesyan and J. Thaler, Dark force detection in low energy e-p collisions, JHEP 01 (2010) 111 [arXiv:0909.2862] [INSPIRE].ADSGoogle Scholar
  73. [73]
    Heavy Photon Search collaboration, Heavy Photon Search experiment.
  74. [74]
    P.H. Adrian, The Heavy Photon Search experiment, arXiv:1301.1103 [INSPIRE].
  75. [75]
    K.J. Kim and Y.-S. Tsai, Improved Weizsacker-Williams method and its application to lepton and W boson pair production, Phys. Rev. D 8 (1973) 3109 [INSPIRE].ADSGoogle Scholar
  76. [76]
    T. Beranek and M. Vanderhaeghen, Study of the discovery potential for hidden photon emission at future electron scattering fixed target experiments, arXiv:1311.5104 [INSPIRE].
  77. [77]
    E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].ADSGoogle Scholar
  78. [78]
    Y.-S. Tsai, Axion bremsstrahlung by an electron beam, Phys. Rev. D 34 (1986) 1326 [INSPIRE].ADSGoogle Scholar
  79. [79]
    J.D. Bjorken et al., Search for neutral metastable penetrating particles produced in the SLAC beam dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].ADSGoogle Scholar
  80. [80]
    A. Bross et al., A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].ADSGoogle Scholar
  81. [81]
    A. Konaka et al., Search for neutral particles in electron beam dump experiment, Phys. Rev. Lett. 57 (1986) 659 [INSPIRE].ADSGoogle Scholar
  82. [82]
    M. Davier and H. Nguyen Ngoc, An unambiguous search for a light Higgs boson, Phys. Lett. B 229 (1989) 150 [INSPIRE].ADSGoogle Scholar
  83. [83]
    S.N. Gninenko, Search for MeV dark photons in a light-shining-through-walls experiment at CERN, Phys. Rev. D 89 (2014) 075008 [arXiv:1308.6521] [INSPIRE].ADSGoogle Scholar
  84. [84]
    S. Andreas et al., Proposal for an experiment to search for light dark matter at the SPS, arXiv:1312.3309 [INSPIRE].
  85. [85]
    B.C. Odom, D. Hanneke, B. D’Urso and G. Gabrielse, New measurement of the electron magnetic moment using a one-electron quantum cyclotron, Phys. Rev. Lett. 97 (2006) 030801 [Erratum ibid. 99 (2007) 039902] [INSPIRE].
  86. [86]
    S.N. Gninenko, Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays, Phys. Lett. B 713 (2012) 244 [arXiv:1204.3583] [INSPIRE].ADSGoogle Scholar
  87. [87]
    P. deNiverville, D. McKeen and A. Ritz, Signatures of sub-GeV dark matter beams at neutrino experiments, Phys. Rev. D 86 (2012) 035022 [arXiv:1205.3499] [INSPIRE].ADSGoogle Scholar
  88. [88]
    J. Blümlein and J. Brunner, New exclusion limits on dark gauge forces from proton bremsstrahlung in beam-dump data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].ADSGoogle Scholar
  89. [89]
    J. Blumlein and J. Brunner, New exclusion limits for dark gauge forces from beam-dump data, Phys. Lett. B 701 (2011) 155 [arXiv:1104.2747] [INSPIRE].ADSGoogle Scholar
  90. [90]
    S.N. Gninenko, Stringent limits on the π 0γX, Xe + e decay from neutrino experiments and constraints on new light gauge bosons, Phys. Rev. D 85 (2012) 055027 [arXiv:1112.5438] [INSPIRE].ADSGoogle Scholar
  91. [91]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  92. [92]
    R. Burman and E. Smith, Parametrization of pion production and reaction cross-sections at LAMPF energies, LA-11502-MS (1989) [INSPIRE].
  93. [93]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., The neutrino flux prediction at MiniBooNE, Phys. Rev. D 79 (2009) 072002 [arXiv:0806.1449] [INSPIRE].ADSGoogle Scholar
  94. [94]
    G. Tel-Zur, Electron pair production in p-Be and p-Au collisions at 450 GeV/c (2014).Google Scholar
  95. [95]
    M. Bourquin and J.-M. Gaillard, Vector meson and ψ contributions to single lepton spectra, Phys. Lett. B 59 (1975) 191 [INSPIRE].ADSGoogle Scholar
  96. [96]
    M. Bourquin and J.-M. Gaillard, A simple phenomenological description of hadron production, Nucl. Phys. B 114 (1976) 334 [INSPIRE].ADSGoogle Scholar
  97. [97]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, arXiv:1310.1921 [INSPIRE].
  98. [98]
    C. Duhr and B. Fuks, A superspace module for the FeynRules package, Comput. Phys. Commun. 182 (2011) 2404 [arXiv:1102.4191] [INSPIRE].ADSMATHGoogle Scholar
  99. [99]
    C. Degrande et al., UFOThe universal FeynRules output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSGoogle Scholar
  100. [100]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSGoogle Scholar
  101. [101]
    CHARM collaboration, F. Bergsma et al., Search for axion like particle production in 400 GeV proton-copper interactions, Phys. Lett. B 157 (1985) 458 [INSPIRE].ADSGoogle Scholar
  102. [102]
    CHARM collaboration, F. Bergsma et al., A search for decays of heavy neutrinos in the mass range 0.5 GeV to 2.8 GeV, Phys. Lett. B 166 (1986) 473 [INSPIRE].ADSGoogle Scholar
  103. [103]
    MINOS Collaboration, I. Ambats et al., The MINOS detectors technical design report, NUMI-L-337 (1998) [INSPIRE].
  104. [104]
    MINOS collaboration, P. Adamson et al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].ADSGoogle Scholar
  105. [105]
    J. Blumlein et al., Limits on neutral light scalar and pseudoscalar particles in a proton beam dump experiment, Z. Phys. C 51 (1991) 341 [INSPIRE].Google Scholar
  106. [106]
    J. Blumlein et al., Limits on the mass of light (pseudo)scalar particles from Bethe-Heitler e + e and μ + μ pair production in a proton-iron beam dump experiment, Int. J. Mod. Phys. A 7 (1992) 3835[INSPIRE].ADSGoogle Scholar
  107. [107]
    K. Abe et al., Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector, Nucl. Instrum. Meth. A 694 (2012) 211 [arXiv:1111.3119] [INSPIRE].ADSGoogle Scholar
  108. [108]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].ADSGoogle Scholar
  109. [109]
    LSND collaboration, L.B. Auerbach et al., Measurement of electron-neutrino-electron elastic scattering, Phys. Rev. D 63 (2001) 112001 [hep-ex/0101039] [INSPIRE].ADSGoogle Scholar
  110. [110]
    S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel et al., Pion production in heavy ion collisions at SIS energies, Z. Phys. A 356 (1997) 421 [nucl-th/9609009] [INSPIRE].ADSGoogle Scholar
  111. [111]
    V. Flaminio, W. Moorhead, D. Morrison and N. Rivoire, Compilation of cross-sections. 3. p and anti-p induced reactions, CERN-HERA-73-1 (1973) [INSPIRE].
  112. [112]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSMATHGoogle Scholar
  113. [113]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSGoogle Scholar
  114. [114]
    M. Aguilar-Benitez et al., Inclusive particle production in 400 GeV/c pp interactions, Z. Phys. C 50 (1991) 405.Google Scholar
  115. [115]
    G. Agakishiev et al., Neutral meson production in p Be and p Au collisions at 450 GeV beam energy, Eur. Phys. J. C 4 (1998) 249 [INSPIRE].ADSGoogle Scholar
  116. [116]
    NA61/SHINE collaboration, N. Abgrall et al., Measurements of cross sections and charged pion spectra in proton-carbon interactions at 31 GeV/c, Phys. Rev. C 84 (2011) 034604 [arXiv:1102.0983] [INSPIRE].ADSGoogle Scholar
  117. [117]
    MINOS collaboration, P. Adamson et al., Search for sterile neutrino mixing in the MINOS long baseline experiment, Phys. Rev. D 81 (2010) 052004 [arXiv:1001.0336] [INSPIRE].ADSGoogle Scholar
  118. [118]
    French-Soviet collaboration, M. Boratav et al., Gamma production and multiplicity correlations between neutral and charged pions in pp interactions at 69 GeV/c, Nucl. Phys. B 111 (1976) 529 [INSPIRE].ADSGoogle Scholar
  119. [119]
    France-Soviet Union collaboration, H. Blumenfeld et al., Photon production in 69 GeV pp interactions, Phys. Lett. B 45 (1973) 525 [INSPIRE].ADSGoogle Scholar
  120. [120]
    T2K collaboration, K. Abe et al., The T2K experiment, Nucl. Instrum. Meth. A 659 (2011) 106 [arXiv:1106.1238] [INSPIRE].ADSGoogle Scholar
  121. [121]
    NOMAD collaboration, P. Astier et al., Search for heavy neutrinos mixing with τ neutrinos, Phys. Lett. B 506 (2001) 27 [hep-ex/0101041] [INSPIRE].ADSGoogle Scholar
  122. [122]
    G. Bernardi et al., Search for neutrino decay, Phys. Lett. B 166 (1986) 479 [INSPIRE].ADSGoogle Scholar
  123. [123]
    G. Bernardi et al., Further limits on heavy neutrino couplings, Phys. Lett. B 203 (1988) 332 [INSPIRE].ADSGoogle Scholar
  124. [124]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., The MiniBooNE detector, Nucl. Instrum. Meth. A 599 (2009) 28 [arXiv:0806.4201] [INSPIRE].ADSGoogle Scholar
  125. [125]
    S. Assylbekov et al., The T2K ND280 off-axis Pi-Zero detector, Nucl. Instrum. Meth. A 686 (2012) 48 [arXiv:1111.5030] [INSPIRE].ADSGoogle Scholar
  126. [126]
    A.S. Kronfeld et al., Project X: physics opportunities, arXiv:1306.5009 [INSPIRE].
  127. [127]
    S. Holmes, S. Nagaitsev and R. Tschirhart, Project X: a flexible high power proton facility, arXiv:1305.3809 [INSPIRE].
  128. [128]
    S.J. Brodsky, F. Fleuret, C. Hadjidakis and J.P. Lansberg, Physics opportunities of a fixed-target experiment using the LHC beams, Phys. Rept. 522 (2013) 239 [arXiv:1202.6585] [INSPIRE].ADSGoogle Scholar
  129. [129]
    J.P. Lansberg et al., A Fixed-Target ExpeRiment at the LHC (AFTER@LHC): luminosities, target polarisation and a selection of physics studies, PoS(QNP2012)049 [arXiv:1207.3507] [INSPIRE].
  130. [130]
    M.J. Strassler, Possible effects of a hidden valley on supersymmetric phenomenology, hep-ph/0607160 [INSPIRE].
  131. [131]
    M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [INSPIRE].ADSGoogle Scholar
  132. [132]
    C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Lepton jets in (supersymmetric) electroweak processes, JHEP 04 (2010) 116 [arXiv:0909.0290] [INSPIRE].ADSGoogle Scholar
  133. [133]
    T. Beranek, H. Merkel and M. Vanderhaeghen, Theoretical framework to analyze searches for hidden light gauge bosons in electron scattering fixed target experiments, Phys. Rev. D 88 (2013) 015032 [arXiv:1303.2540] [INSPIRE].ADSGoogle Scholar
  134. [134]
    J.R. Andersen, M. Rauch and M. Spannowsky, Dark sector spectroscopy at the ILC, arXiv:1308.4588 [INSPIRE].
  135. [135]
    A. Kumar, D.E. Morrissey and A. Spray, Kinetically-enhanced anomaly mediation, JHEP 12 (2011) 013 [arXiv:1109.1565] [INSPIRE].ADSGoogle Scholar
  136. [136]
    J.F. Donoghue, J. Gasser and H. Leutwyler, The decay of a light Higgs boson, Nucl. Phys. B 343 (1990) 341 [INSPIRE].ADSGoogle Scholar
  137. [137]
    F. Bezrukov and D. Gorbunov, Light inflaton hunters guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].ADSGoogle Scholar
  138. [138]
    F. Bezrukov and D. Gorbunov, Light inflaton after LHC8 and WMAP9 results, JHEP 07 (2013) 140 [arXiv:1303.4395] [INSPIRE].ADSGoogle Scholar
  139. [139]
    Y.-S. Tsai, Pair production and bremsstrahlung of charged leptons, Rev. Mod. Phys. 46 (1974) 815 [Erratum ibid. 49 (1977) 521-423] [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.TRIUMFVancouverCanada
  2. 2.ARC Centre of Excellence for Particle Physics at the Terascale, School of PhysicsUniversity of MelbourneVictoriaAustralia

Personalised recommendations