Topological strings and 5d T N partition functions

  • Hirotaka Hayashi
  • Hee-Cheol Kim
  • Takahiro Nishinaka
Open Access


We evaluate the Nekrasov partition function of 5d gauge theories engineered by webs of 5-branes, using the refined topological vertex on the dual Calabi-Yau three-folds. The theories include certain non-Lagrangian theories such as the T N theory. The refined topological vertex computation generically contains contributions from decoupled M2-branes which are not charged under the 5d gauge symmetry engineered. We argue that, after eliminating them, the refined topological string partition function agrees with the 5d Nekrasov partition function. We explicitly check this for the T 3 theory as well as Sp(1) gauge theories with N f = 2, 3, 4 flavors. In particular, our method leads to a new expression of the Sp(1) Nekrasov partition functions without any contour integrals. We also develop prescriptions to calculate the partition functions of theories obtained by Higgsing the T N theory. We compute the partition function of the E 7 theory via this prescription, and find the E 7 global symmetry enhancement. We finally discuss a potential application of the refined topological vertex to non-toric web diagrams.


Supersymmetric gauge theory Field Theories in Higher Dimensions Topological Strings Duality in Gauge Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  2. [2]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N = 2 supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    P.C. Argyres and A.E. Faraggi, The vacuum structure and spectrum of N = 2 supersymmetric SU(N) gauge theory, Phys. Rev. Lett. 74 (1995) 3931 [hep-th/9411057] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Hanany and Y. Oz, On the quantum moduli space of vacua of N = 2 supersymmetric SU(N c) gauge theories, Nucl. Phys. B 452 (1995) 283 [hep-th/9505075] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    P.C. Argyres, M.R. Plesser and A.D. Shapere, The Coulomb phase of N = 2 supersymmetric QCD, Phys. Rev. Lett. 75 (1995) 1699 [hep-th/9505100] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  9. [9]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  10. [10]
    H. Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series 18, American Mathematical Society, Providence U.S.A. (1999).Google Scholar
  11. [11]
    N. Nekrasov and A.S. Schwarz, Instantons on noncommutative R 4 and (2, 0) superconformal six-dimensional theory, Commun. Math. Phys. 198 (1998) 689 [hep-th/9802068] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    M. Mariño and N. Wyllard, A note on instanton counting for N = 2 gauge theories with classical gauge groups, JHEP 05 (2004) 021 [hep-th/0404125] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359 [hep-th/0404225] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim superconformal index with enhanced E n global symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    D. Bashkirov, A comment on the enhancement of global symmetries in superconformal SU(2) gauge theories in 5D, arXiv:1211.4886 [INSPIRE].
  17. [17]
    A. Iqbal, All genus topological string amplitudes and five-brane webs as Feynman diagrams, hep-th/0207114 [INSPIRE].
  18. [18]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    H. Awata and H. Kanno, Instanton counting, Macdonald functions and the moduli space of D-branes, JHEP 05 (2005) 039 [hep-th/0502061] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    A. Klemm, W. Lerche, P. Mayr, C. Vafa and N.P. Warner, Selfdual strings and N = 2 supersymmetric field theory, Nucl. Phys. B 477 (1996) 746 [hep-th/9604034] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4D N = 2 gauge theories: 1, Adv. Theor. Math. Phys. 1 (1998) 53 [hep-th/9706110] [INSPIRE].MathSciNetGoogle Scholar
  27. [27]
    A. Iqbal and A.-K. Kashani-Poor, Instanton counting and Chern-Simons theory, Adv. Theor. Math. Phys. 7 (2004) 457 [hep-th/0212279] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  28. [28]
    A. Iqbal and A.-K. Kashani-Poor, SU(N) geometries and topological string amplitudes, Adv. Theor. Math. Phys. 10 (2006) 1 [hep-th/0306032] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    T. Eguchi and H. Kanno, Topological strings and Nekrasovs formulas, JHEP 12 (2003) 006 [hep-th/0310235] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    T.J. Hollowood, A. Iqbal and C. Vafa, Matrix models, geometric engineering and elliptic genera, JHEP 03 (2008) 069 [hep-th/0310272] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    M. Taki, Refined topological vertex and instanton counting, JHEP 03 (2008) 048 [arXiv:0710.1776] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    D.-E. Diaconescu, B. Florea and N. Saulina, A vertex formalism for local ruled surfaces, Commun. Math. Phys. 265 (2006) 201 [hep-th/0505192] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  35. [35]
    D.-E. Diaconescu and B. Florea, The ruled vertex and nontoric del Pezzo surfaces, JHEP 12 (2006) 028 [hep-th/0507240] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-Lagrangian theories from brane junctions, JHEP 01 (2014) 175 [arXiv:1310.3841] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  37. [37]
    M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146 [hep-th/9606086] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nonperturbative results on the point particle limit of N = 2 heterotic string compactifications, Nucl. Phys. B 459 (1996) 537 [hep-th/9508155] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [INSPIRE].MATHMathSciNetGoogle Scholar
  42. [42]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Topological amplitudes in string theory, Nucl. Phys. B 413 (1994) 162 [hep-th/9307158] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  45. [45]
    R. Gopakumar and C. Vafa, M theory and topological strings. 1, hep-th/9809187 [INSPIRE].
  46. [46]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].
  47. [47]
    M. Aganagic, M. Mariño and C. Vafa, All loop topological string amplitudes from Chern-Simons theory, Commun. Math. Phys. 247 (2004) 467 [hep-th/0206164] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    L. Hollands, C.A. Keller and J. Song, From SO/Sp instantons to W-algebra blocks, JHEP 03 (2011) 053 [arXiv:1012.4468] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    I. Antoniadis, S. Hohenegger, K.S. Narain and T.R. Taylor, Deformed topological partition function and Nekrasov backgrounds, Nucl. Phys. B 838 (2010) 253 [arXiv:1003.2832] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    Y. Nakayama and H. Ooguri, Comments on worldsheet description of the Omega background, Nucl. Phys. B 856 (2012) 342 [arXiv:1106.5503] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    I. Antoniadis, I. Florakis, S. Hohenegger, K.S. Narain and A. Zein Assi, Worldsheet realization of the refined topological string, Nucl. Phys. B 875 (2013) 101 [arXiv:1302.6993] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    I. Antoniadis, I. Florakis, S. Hohenegger, K.S. Narain and A. Zein Assi, Non-perturbative Nekrasov partition function from string theory, Nucl. Phys. B 880 (2014) 87 [arXiv:1309.6688] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    M. Aganagic and S. Shakirov, Refined Chern-Simons theory and topological string, arXiv:1210.2733 [INSPIRE].
  54. [54]
    A. Iqbal and C. Kozcaz, Refined topological strings and toric Calabi-Yau threefolds, arXiv:1210.3016 [INSPIRE].
  55. [55]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal index, JHEP 01 (2014) 079 [arXiv:1310.2150] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    A. Iqbal and C. Vafa, BPS degeneracies and superconformal index in diverse dimensions, arXiv:1210.3605 [INSPIRE].
  57. [57]
    Y. Tachikawa, Five-dimensional Chern-Simons terms and Nekrasovs instanton counting, JHEP 02 (2004) 050 [hep-th/0401184] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  58. [58]
    A. Iqbal, C. Kozcaz and K. Shabbir, Refined topological vertex, cylindric partitions and the U(1) adjoint theory, Nucl. Phys. B 838 (2010) 422 [arXiv:0803.2260] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  59. [59]
    D. Karp, C.-C.M. Liu and M. Mariño, The local Gromov-Witten invariants of configurations of rational curves, math.AG/0506488 [INSPIRE].
  60. [60]
    P. Sulkowski, Crystal model for the closed topological vertex geometry, JHEP 12 (2006) 030 [hep-th/0606055] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  61. [61]
    C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    S.H. Katz, A. Klemm and C. Vafa, M theory, topological strings and spinning black holes, Adv. Theor. Math. Phys. 3 (1999) 1445 [hep-th/9910181] [INSPIRE].MATHMathSciNetGoogle Scholar
  63. [63]
    C. Vafa, Supersymmetric partition functions and a string theory in 4 dimensions, arXiv:1209.2425 [INSPIRE].
  64. [64]
    H. Awata and H. Kanno, Refined BPS state counting from Nekrasovs formula and Macdonald functions, Int. J. Mod. Phys. A 24 (2009) 2253 [arXiv:0805.0191] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    H. Awata and H. Kanno, Changing the preferred direction of the refined topological vertex, J. Geom. Phys. 64 (2013) 91 [arXiv:0903.5383] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  66. [66]
    T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  67. [67]
    M. Taki, Surface operator, bubbling Calabi-Yau and AGT relation, JHEP 07 (2011) 047 [arXiv:1007.2524] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    M. Aganagic and S. Shakirov, Knot homology from refined Chern-Simons theory, arXiv:1105.5117 [INSPIRE].
  69. [69]
    G. Bonelli, A. Tanzini and J. Zhao, Vertices, vortices and interacting surface operators, JHEP 06 (2012) 178 [arXiv:1102.0184] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    G. Bonelli, A. Tanzini and J. Zhao, The Liouville side of the vortex, JHEP 09 (2011) 096 [arXiv:1107.2787] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    D. Gaiotto and S.S. Razamat, Exceptional indices, JHEP 05 (2012) 145 [arXiv:1203.5517] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  72. [72]
    D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, arXiv:1207.3577 [INSPIRE].
  73. [73]
    O. Bergman and A. Fayyazuddin, String junction transitions in the moduli space of N = 2 SYM, Nucl. Phys. B 535 (1998) 139 [hep-th/9806011] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  74. [74]
    O. Chacaltana and J. Distler, Tinkertoys for Gaiotto duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  75. [75]
    N. Mekareeya and D. Rodriguez-Gomez, 5d gauge theories on orbifolds and 4dt Hooft line indices, JHEP 11 (2013) 157 [arXiv:1309.1213] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    N. Wyllard, A N −1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  77. [77]
    H. Awata and Y. Yamada, Five-dimensional AGT conjecture and the deformed Virasoro algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  78. [78]
    H. Awata and Y. Yamada, Five-dimensional AGT relation and the deformed β-ensemble, Prog. Theor. Phys. 124 (2010) 227 [arXiv:1004.5122] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  79. [79]
    R. Schiappa and N. Wyllard, An A r threesome: matrix models, 2d CFTs and 4d N = 2 gauge theories, J. Math. Phys. 51 (2010) 082304 [arXiv:0911.5337] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  80. [80]
    A. Mironov, A. Morozov, S. Shakirov and A. Smirnov, Proving AGT conjecture as HS duality: extension to five dimensions, Nucl. Phys. B 855 (2012) 128 [arXiv:1105.0948] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  81. [81]
    F. Nieri, S. Pasquetti and F. Passerini, 3d & 5d gauge theory partition functions as q-deformed CFT correlators, arXiv:1303.2626 [INSPIRE].
  82. [82]
    M.-C. Tan, M-theoretic derivations of 4d-2d dualities: from a geometric Langlands duality for surfaces, to the AGT correspondence, to integrable systems, JHEP 07 (2013) 171 [arXiv:1301.1977] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M.-C. Tan, An M-theoretic derivation of a 5d and 6d AGT correspondence and relativistic and elliptized integrable systems, JHEP 12 (2013) 031 [arXiv:1309.4775] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  85. [85]
    A. Iqbal and A.-K. Kashani-Poor, The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317 [hep-th/0410174] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  86. [86]
    L. Bao, E. Pomoni, M. Taki and F. Yagi, M5-branes, toric diagrams and gauge theory duality, JHEP 04 (2012) 105 [arXiv:1112.5228] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Hirotaka Hayashi
    • 1
    • 4
  • Hee-Cheol Kim
    • 2
    • 4
  • Takahiro Nishinaka
    • 3
  1. 1.Instituto de Física Teórica UAM/CSISMadridSpain
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayU.S.A.
  4. 4.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations