Advertisement

Photon isolation effects at NLO in γγ+jet final states in hadronic collisions

  • T. Gehrmann
  • N. Greiner
  • G. Heinrich
Article

Abstract

We present the NLO QCD corrections to pp → γγj production at hadron colliders. Our calculation includes contributions from the fragmentation of a hadronic jet into a highly energetic photon, and consequently allows the implementation of arbitrary infrared-safe photon isolation definitions. We compare different photon isolation criteria and perform a detailed study of the dependence of the γγj cross section on the photon isolation parameters.

Keywords

QCD Phenomenology NLO Computations 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Search for diphoton events with large missing transverse momentum in 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 718 (2012) 411 [arXiv:1209.0753] [INSPIRE].ADSGoogle Scholar
  4. [4]
    ATLAS collaboration, Search for Extra Dimensions in diphoton events using proton-proton collisions recorded at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, New J. Phys. 15 (2013) 043007 [arXiv:1210.8389] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    CMS collaboration, Search for supersymmetry in events with photons and low missing transverse energy in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 719 (2013) 42 [arXiv:1210.2052] [INSPIRE].ADSGoogle Scholar
  6. [6]
    CMS collaboration, Search for new physics in events with photons, jets and missing transverse energy in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 03 (2013) 111 [arXiv:1211.4784] [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Binoth, J. Guillet, E. Pilon and M. Werlen, A Full next-to-leading order study of direct photon pair production in hadronic collisions, Eur. Phys. J. C 16 (2000) 311 [hep-ph/9911340] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Z. Bern, L.J. Dixon and C. Schmidt, Isolating a light Higgs boson from the diphoton background at the CERN LHC, Phys. Rev. D 66 (2002) 074018 [hep-ph/0206194] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Balázs, P.M. Nadolsky, C. Schmidt and C. Yuan, Diphoton background to Higgs boson production at the LHC with soft gluon effects, Phys. Lett. B 489 (2000) 157 [hep-ph/9905551] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Balázs, E.L. Berger, P.M. Nadolsky and C.-P. Yuan, All-orders resummation for diphoton production at hadron colliders, Phys. Lett. B 637 (2006) 235 [hep-ph/0603037] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Hoeche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].ADSGoogle Scholar
  13. [13]
    L. D’Errico and P. Richardson, Next-to-Leading-Order Monte Carlo Simulation of Diphoton Production in Hadronic Collisions, JHEP 02 (2012) 130 [arXiv:1106.3939] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Odaka and Y. Kurihara, Consistent simulation of non-resonant diphoton production at hadron collisions with a custom-made parton shower, Phys. Rev. D 85 (2012) 114022 [arXiv:1203.4038] [INSPIRE].ADSGoogle Scholar
  15. [15]
    E.W.N. Glover and A. Morgan, Measuring the photon fragmentation function at LEP, Z. Phys. C62 (1994) 311.ADSGoogle Scholar
  16. [16]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Radiative corrections to the photon + 1 jet rate at LEP, Phys. Lett. B 414 (1997) 354 [hep-ph/9705305] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Gehrmann-De Ridder and E.W.N. Glover, Final state photon production at LEP, Eur. Phys. J. C 7 (1999) 29 [hep-ph/9806316] [INSPIRE].ADSGoogle Scholar
  18. [18]
    V. Del Duca, F. Maltoni, Z. Nagy and Z. Trócsányi, QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders, JHEP 04 (2003) 059 [hep-ph/0303012] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Z. Bern et al., Driving Missing Data at Next-to-Leading Order, Phys. Rev. D 84 (2011) 114002 [arXiv:1106.1423] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Jager, Next-to-leading order QCD corrections to photon production via weak-boson fusion, Phys. Rev. D 81 (2010) 114016 [arXiv:1004.0825] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].ADSGoogle Scholar
  24. [24]
    SM and NLO multi-leg and SM MC Working Groups, J. Alcaraz Maestre et al., The SM and NLO Multileg and SM MC Working Groups: Summary Report, arXiv:1203.6803 [INSPIRE].
  25. [25]
    Z. Kunszt and Z. Trócsányi, QCD corrections to photon production in association with hadrons in e + e annihilation, Nucl. Phys. B 394 (1993) 139 [hep-ph/9207232] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    OPAL collaboration, Measurement of the quark to photon fragmentation function through the inclusive production of prompt photons in hadronic Z 0 decays, Eur. Phys. J. C 2 (1998) 39 [hep-ex/9708020] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Gehrmann-De Ridder, T. Gehrmann and E. Poulsen, Isolated photons in deep inelastic scattering, Phys. Rev. Lett. 96 (2006) 132002 [hep-ph/0601073] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    ZEUS collaboration, Observation of isolated high E T photons in deep inelastic scattering, Phys. Lett. B 595 (2004) 86 [hep-ex/0402019] [INSPIRE].ADSGoogle Scholar
  29. [29]
    ZEUS collaboration, Measurement of isolated photon production in deep inelastic ep scattering, Phys. Lett. B 687 (2010) 16 [arXiv:0909.4223] [INSPIRE].ADSGoogle Scholar
  30. [30]
    H1 collaboration, Measurement of isolated photon production in deep-inelastic scattering at HERA, Eur. Phys. J. C 54 (2008) 371 [arXiv:0711.4578] [INSPIRE].Google Scholar
  31. [31]
    ALEPH collaboration, First measurement of the quark to photon fragmentation function, Z. Phys. C 69 (1996) 365 [INSPIRE].Google Scholar
  32. [32]
    A. Gehrmann-De Ridder and E.W.N. Glover, A Complete O(αα s ) calculation of the photon + 1 jet rate in e + e annihilation, Nucl. Phys. B 517 (1998) 269 [hep-ph/9707224] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Gehrmann-De Ridder, T. Gehrmann and E. Poulsen, Measuring the Photon Fragmentation Function at HERA, Eur. Phys. J. C 47 (2006) 395 [hep-ph/0604030] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Owens, Large Momentum Transfer Production of Direct Photons, Jets and Particles, Rev. Mod. Phys. 59 (1987) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Gluck, E. Reya and A. Vogt, Parton fragmentation into photons beyond the leading order, Phys. Rev. D 48 (1993) 116 [Erratum ibid. D 51 (1995) 1427] [INSPIRE].
  37. [37]
    L. Bourhis, M. Fontannaz and J. Guillet, Quarks and gluon fragmentation functions into photons, Eur. Phys. J. C 2 (1998) 529 [hep-ph/9704447] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Denner, S. Dittmaier, T. Gehrmann and C. Kurz, Electroweak corrections to three-jet production in electron-positron annihilation, Phys. Lett. B 679 (2009) 219 [arXiv:0906.0372] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Denner, S. Dittmaier, T. Gehrmann and C. Kurz, Electroweak corrections to hadronic event shapes and jet production in e + e annihilation, Nucl. Phys. B 836 (2010) 37 [arXiv:1003.0986] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Denner, S. Dittmaier, T. Kasprzik and A. Muck, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Denner, S. Dittmaier, T. Kasprzik and A. Muck, Electroweak corrections to dilepton + jet production at hadron colliders, JHEP 06 (2011) 069 [arXiv:1103.0914] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Catani, M. Fontannaz, J. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP 05 (2002) 028 [hep-ph/0204023] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Z. Belghobsi et al., Photon - Jet Correlations and Constraints on Fragmentation Functions, Phys. Rev. D 79 (2009) 114024 [arXiv:0903.4834] [INSPIRE].ADSGoogle Scholar
  44. [44]
    T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Frederix, T. Gehrmann and N. Greiner, Automation of the Dipole Subtraction Method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP 06 (2010) 086 [arXiv:1004.2905] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Catani and M. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503–504] [hep-ph/9605323] [INSPIRE].
  49. [49]
    F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  51. [51]
    J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  52. [52]
    J. Kuipers, T. Ueda, J. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: A Form Library for Helicity Spinors, Comput. Phys. Commun. 182 (2011) 2368 [arXiv:1008.0803] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  54. [54]
    T. Reiter, Optimising Code Generation with haggies, Comput. Phys. Commun. 181 (2010) 1301 [arXiv:0907.3714] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  55. [55]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    R.K. Ellis, W. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    P. Mastrolia, G. Ossola, C. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial Reconstruction at the Integrand Level, JHEP 10 (2010) 105 [arXiv:1008.2441] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: A Numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  61. [61]
    G. Cullen et al., Golem95C: A library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  62. [62]
    S. Dittmaier, A General approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    T. Gehrmann and N. Greiner, Photon Radiation with MadDipole, JHEP 12 (2010) 050 [arXiv:1011.0321] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet observables in electron positron annihilation, Phys. Rev. D 59 (1999) 014020 [Erratum ibid. D 62 (2000) 099902] [hep-ph/9806317] [INSPIRE].
  65. [65]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSGoogle Scholar
  68. [68]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ + jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  2. 2.Max Planck Institut für PhysikMünchenGermany

Personalised recommendations