MSW instantons

  • Ron Donagi
  • Martijn Wijnholt


We analyze M5-instantons in F-theory, or equivalently D3-instantons with varying axio-dilaton, in the presence of 7-brane gauge groups. The chiral two-form on the M5-brane plays an important role, because it couples the M5 brane to vector multiplets and charged chiral fields. The chiral two-form does not have a semi-classical description. However if the worldvolume of the M5 admits a fibration over a curve with surface fibers, then we can reduce the worldvolume theory to an ‘MSW’ CFT by shrinking the surface. For this class of MSW instantons, we can use heterotic methods to do computations. We explain this in some detail using the physical gauge approach. We further compare M5-instantons with D3-instantons in perturbative type IIb and find some striking differences. In particular, we show that instanton zero modes tend to disappear and constraints from chirality on instanton contributions to the superpotential evaporate for finite string coupling.


F-Theory Superstring Vacua String Duality 


  1. [1]
    K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string theory, Nucl. Phys. B 456 (1995) 130 [hep-th/9507158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    J.A. Harvey and G.W. Moore, Superpotentials and membrane instantons, hep-th/9907026 [INSPIRE].
  3. [3]
    E. Witten, World sheet corrections via D instantons, JHEP 02 (2000) 030 [hep-th/9907041] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6]
    R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].MathSciNetMATHGoogle Scholar
  7. [7]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryI, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    H. Hayashi, R. Tatar, Y. Toda, T. Watari and M. Yamazaki, New aspects of heterotic-F theory duality, Nucl. Phys. B 806 (2009) 224 [arXiv:0805.1057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D 55 (1997) 7345 [hep-th/9702165] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Clingher, R. Donagi and M. Wijnholt, The Sen limit, arXiv:1212.4505 [INSPIRE].
  11. [11]
    O.J. Ganor, A note on zeros of superpotentials in F-theory, Nucl. Phys. B 499 (1997) 55 [hep-th/9612077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, arXiv:0904.1218 [INSPIRE].
  13. [13]
    R. Blumenhagen, S. Moster and E. Plauschinn, Moduli stabilisation versus chirality for MSSM like type IIB orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    R. Donagi, S. Katz and M. Wijnholt, Weak coupling, degeneration and log Calabi-Yau spaces, arXiv:1212.0553 [INSPIRE].
  15. [15]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    E.I. Buchbinder, R. Donagi and B.A. Ovrut, Superpotentials for vector bundle moduli, Nucl. Phys. B 653 (2003) 400 [hep-th/0205190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    R. Donagi and M. Wijnholt, Gluing branes, I, JHEP 05 (2013) 068 [arXiv:1104.2610] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Donagi and M. Wijnholt, Gluing branes II: flavour physics and string duality, JHEP 05 (2013) 092 [arXiv:1112.4854] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-brane instantons in type II orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.J. Heckman, J. Marsano, N. Saulina, S. Schäfer-Nameki and C. Vafa, Instantons and SUSY breaking in F-theory, arXiv:0808.1286 [INSPIRE].
  21. [21]
    M. Cvetič, I. Garcia-Etxebarria and R. Richter, Branes and instantons at angles and the F-theory lift of O(1) instantons, AIP Conf. Proc. 1200 (2010) 246 [arXiv:0911.0012] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Cvetič, I. Garcia-Etxebarria and J. Halverson, Global F-theory models: instantons and gauge dynamics, JHEP 01 (2011) 073 [arXiv:1003.5337] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Blumenhagen, A. Collinucci and B. Jurke, On instanton effects in F-theory, JHEP 08 (2010) 079 [arXiv:1002.1894] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M. Wijnholt, MSW quantum cohomology, talk given at the workshop GUTs and Strings, February 10–12, Munich, Germany (2010).
  25. [25]
    C. Beasley and E. Witten, New instanton effects in string theory, JHEP 02 (2006) 060 [hep-th/0512039] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).Google Scholar
  27. [27]
    G. Curio, Perspectives on pfaffians of heterotic world-sheet instantons, JHEP 09 (2009) 131 [arXiv:0904.2738] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    J. Distler and B.R. Greene, Some exact results on the superpotential from Calabi-Yau compactifications, Nucl. Phys. B 309 (1988) 295 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles III: Quillen metrics on holomorphic determinants, Comm. Math. Phys. 115 (1988) 302.ADSGoogle Scholar
  30. [30]
    L. Álvarez-Gaumé, G.W. Moore and C. Vafa, Theta functions, modular invariance and strings, Commun. Math. Phys. 106 (1986) 1 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    S. Weinberg, The quantum theory of fields. Volume 3: supersymmetry, Cambridge University Press, Cambridge U.K. (2000).CrossRefGoogle Scholar
  32. [32]
    E. Witten and J. Bagger, Quantization of Newtons constant in certain supergravity theories, Phys. Lett. B 115 (1982) 202 [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    P. Berglund et al., On the instanton contributions to the masses and couplings of E 6 singlets, Nucl. Phys. B 454 (1995) 127 [hep-th/9505164] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    M. Dine, N. Seiberg, X. Wen and E. Witten, Nonperturbative effects on the string world sheet. 2, Nucl. Phys. B 289 (1987) 319 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    R. Kallosh, A.-K. Kashani-Poor and A. Tomasiello, Counting fermionic zero modes on M5 with fluxes, JHEP 06 (2005) 069 [hep-th/0503138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    N. Saulina, Topological constraints on stabilized flux vacua, Nucl. Phys. B 720 (2005) 203 [hep-th/0503125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    S.H. Katz and C. Vafa, Geometric engineering of N = 1 quantum field theories, Nucl. Phys. B 497 (1997) 196 [hep-th/9611090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    A.M. Polyakov, Quark confinement and topology of gauge groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    D.-E. Diaconescu and S. Gukov, Three-dimensional N = 2 gauge theories and degenerations of Calabi-Yau four folds, Nucl. Phys. B 535 (1998) 171 [hep-th/9804059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 500 (1997) 163 [hep-th/9703100] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Witten, Duality relations among topological effects in string theory, JHEP 05 (2000) 031 [hep-th/9912086] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    M. Henningson, B.E. Nilsson and P. Salomonson, Holomorphic factorization of correlation functions in (4k + 2)-dimensional (2k) form gauge theory, JHEP 09 (1999) 008 [hep-th/9908107] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, Adv. Theor. Math. Phys. 15 (2011) 1523 [arXiv:0808.2223] [INSPIRE].MathSciNetMATHGoogle Scholar
  45. [45]
    G. Curio and R.Y. Donagi, Moduli in N = 1 heterotic/F theory duality, Nucl. Phys. B 518 (1998) 603 [hep-th/9801057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  47. [47]
    T. Pantev and M. Wijnholt, Hitchins equations and M-theory phenomenology, J. Geom. Phys. 61 (2011) 1223 [arXiv:0905.1968] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.Physics DepartmentHarvard UniversityCambridgeU.S.A.

Personalised recommendations