Advertisement

E 8 duality and dual gravity

  • Hadi Godazgar
  • Mahdi Godazgar
  • Malcolm J. Perry
Article

Abstract

We construct the non-linear realisation of the E 8 motion group and compare this with the bosonic sector of eleven dimensional supergravity. The construction naturally leads to the introduction of a new potential field. We identify this new field with the dual gravity field by considering the reduction of the eleven-dimensional theory to three dimensions.

Keywords

Supergravity Models String Duality M-Theory 

References

  1. [1]
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven-dimensions, Phys. Lett. B 76 (1978) 409 [INSPIRE].ADSGoogle Scholar
  2. [2]
    E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The Lagrangian, Phys. Lett. B 80 (1978) 48 [INSPIRE].ADSGoogle Scholar
  3. [3]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    B. Julia, Group disintegrations, in Superspace and supergravity: proceedings of the Nuffield workshop, Cambridge 1980, S.W. Hawking and M. Rocek eds., Cambridge University Press, Cambridge U.K. (1981) 331.Google Scholar
  5. [5]
    H. Nicolai, The integrability of n = 16 supergravity, Phys. Lett. B 194 (1987) 402 [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    E. Cremmer, B. Julia, H. Lü and C. Pope, Dualization of dualities. 1., Nucl. Phys. B 523 (1998) 73 [hep-th/9710119] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    B. de Wit and H. Nicolai, d = 11 supergravity with local SU(8) invariance, Nucl. Phys. B 274 (1986) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H. Nicolai, d = 11 supergravity with local SO(16) invariance, Phys. Lett. B 187 (1987) 316 [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    N. Hitchin, Brackets, forms and invariant functionals, math/0508618 [INSPIRE].
  13. [13]
    M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].
  14. [14]
    P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    K. Koepsell, H. Nicolai and H. Samtleben, An exceptional geometry for D = 11 supergravity?, Class. Quant. Grav. 17 (2000) 3689 [hep-th/0006034] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    M. Duff and J. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSGoogle Scholar
  28. [28]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSGoogle Scholar
  29. [29]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    I. Jeon, K. Lee and J.-H. Park, Double field formulation of Yang-Mills theory, Phys. Lett. B 701 (2011) 260 [arXiv:1102.0419] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11 (2011) 025 [arXiv:1109.2035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × \( {{\mathbb{R}}^{+}} \) generalised geometry, connections and M-theory, arXiv:1112.3989 [INSPIRE].
  39. [39]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry II: E d(d) × \( {{\mathbb{R}}^{+}} \) and M-theory, arXiv:1212.1586 [INSPIRE].
  41. [41]
    J.-H. Park and Y. Suh, U-geometry : SL(5), JHEP 04 (2013) 147 [arXiv:1302.1652] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Cederwall, J. Edlund and A. Karlsson, Exceptional geometry and tensor fields, arXiv:1302.6736 [INSPIRE].
  43. [43]
    G. Aldazabal, M. Graña, D. Marqués and J. Rosabal, Extended geometry and gauged maximal supergravity, arXiv:1302.5419 [INSPIRE].
  44. [44]
    C. Isham, A. Salam and J. Strathdee, Nonlinear realizations of space-time symmetries. Scalar and tensor gravity, Annals Phys. 62 (1971) 98 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  45. [45]
    A. Borisov and V. Ogievetsky, Theory of dynamical affine and conformal symmetries as gravity theory, Theor. Math. Phys. 21 (1975) 1179 [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    P.C. West, Hidden superconformal symmetry in M-theory, JHEP 08 (2000) 007 [hep-th/0005270] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Riccioni and P. West, Local E 11, JHEP 04 (2009) 051 [arXiv:0902.4678] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    N. Marcus and J.H. Schwarz, Three-dimensional supergravity theories, Nucl. Phys. B 228 (1983) 145 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    B. Julia, Application of supergravity to gravitation theory, in Unified field theories in more than 4 dimensions, V.D. Sabbata and E. Schmutzer eds., World Scientific, Singapore (1983) 215.Google Scholar
  50. [50]
    C. Hull, Strongly coupled gravity and duality, Nucl. Phys. B 583 (2000) 237 [hep-th/0004195] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    C. Hull, Symmetries and compactifications of (4,0) conformal gravity, JHEP 12 (2000) 007 [hep-th/0011215] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  53. [53]
    C. Hull, Duality in gravity and higher spin gauge fields, JHEP 09 (2001) 027 [hep-th/0107149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    M. Henneaux and C. Teitelboim, Duality in linearized gravity, Phys. Rev. D 71 (2005) 024018 [gr-qc/0408101] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    T. Curtright, Generalized gauge fields, Phys. Lett. B 165 (1985) 304 [INSPIRE].MathSciNetADSGoogle Scholar
  56. [56]
    X. Bekaert, N. Boulanger and M. Henneaux, Consistent deformations of dual formulations of linearized gravity: a no go result, Phys. Rev. D 67 (2003) 044010 [hep-th/0210278] [INSPIRE].MathSciNetADSGoogle Scholar
  57. [57]
    N. Obers, B. Pioline and E. Rabinovici, M theory and U duality on T d with gauge backgrounds, Nucl. Phys. B 525 (1998) 163 [hep-th/9712084] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    N. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, A. Kleinschmidt and F. Riccioni, Dual gravity and matter, Gen. Rel. Grav. 41 (2009) 39 [arXiv:0803.1963] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  60. [60]
    N. Boulanger and O. Hohm, Non-linear parent action and dual gravity, Phys. Rev. D 78 (2008) 064027 [arXiv:0806.2775] [INSPIRE].MathSciNetADSGoogle Scholar
  61. [61]
    E.A. Bergshoeff, M. de Roo and O. Hohm, Can dual gravity be reconciled with E 11 ?, Phys. Lett. B 675 (2009) 371 [arXiv:0903.4384] [INSPIRE].ADSGoogle Scholar
  62. [62]
    P. West, Generalised geometry, eleven dimensions and E 11, JHEP 02 (2012) 018 [arXiv:1111.1642] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    N. Boulanger, P.P. Cook and D. Ponomarev, Off-shell Hodge dualities in linearised gravity and E 11, JHEP 09 (2012) 089 [arXiv:1205.2277] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    E. Cremmer, B. Julia, H. Lü and C. Pope, Dualization of dualities. 2. Twisted selfduality of doubled fields and superdualities, Nucl. Phys. B 535 (1998) 242 [hep-th/9806106] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    E. Cartan, Les groupes réels simples, finis et continus, Ann. Sci. École Norm. Sup. 31 (1914) 263.MathSciNetGoogle Scholar
  66. [66]
    K. Peeters, A field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs/0608005] [INSPIRE].ADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Hadi Godazgar
    • 1
  • Mahdi Godazgar
    • 1
  • Malcolm J. Perry
    • 2
  1. 1.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdamGermany
  2. 2.DAMTP, Centre for Mathematical SciencesUniversity of CambridgeCambridgeU.K.

Personalised recommendations