Advertisement

Operators, correlators and free fermions for SO(N) and Sp(N)

  • Pawel Caputa
  • Robert de Mello Koch
  • Pablo Diaz
Article

Abstract

Using the recently constructed basis for local operators in free SO(N) gauge theory we derive an exact formula for the correlation functions of multi trace operators. This formula is used to obtain a simpler form and a simple product rule for the operators in the SO(N) basis. The coefficients of the product rule are the Littlewood-Richardson numbers which determine the corresponding product rule in free U(N) gauge theory. SO(N) gauge theory is dual to a non-oriented string theory on the AdS5 × \( \mathcal{R}{{\mathrm{P}}^5} \) geometry. To explore the physics of this string theory we consider the limit of the gauge theory that, for the U(N) gauge theory, is dual to the pp-wave limit of AdS5 × S 5. Non-planar unoriented ribbon diagrams do not survive this limit. We give arguments that the number of operators in our basis matches counting using the exact free field partition function of free SO(N) gauge theory. We connect the basis we have constructed to free fermions, which has a natural interpretation in terms of a class of \( \frac{1}{2} \)-BPS bubbling geometries, which arise as orientifolds of type IIB string theory. Finally, we obtain a complete generalization of these results to Sp(N) gauge theory by proving that the finite N physics of SO(N) and Sp(N) gauge theory are related by exchanging symmetrizations and antisymmetrizations and replacing N by − N.

Keywords

Brane Dynamics in Gauge Theories Gauge-gravity correspondence AdSCFT Correspondence 

References

  1. [1]
    P. Caputa, R. de Mello Koch and P. Diaz, A basis for large operators in N = 4 SYM with orthogonal gauge group, JHEP 03 (2013) 041 [arXiv:1301.1560] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N =4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetGoogle Scholar
  3. [3]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitons - With strings attached (I), JHEP 06 (2007) 074 [hep-th/0701066] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and Brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact multi-matrix correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Y. Kimura, Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra, JHEP 12 (2009) 044 [arXiv:0910.2170] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Y. Kimura, Correlation functions and representation bases in free N = 4 super Yang-Mills, Nucl. Phys. B 865 (2012) 568 [arXiv:1206.4844] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Pasukonis and S. Ramgoolam, Quivers as calculators: counting, correlators and Riemann surfaces, JHEP 04 (2013) 094 [arXiv:1301.1980] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. de Mello Koch, G. Mashile and N. Park, Emergent threebrane lattices, Phys. Rev. D 81 (2010) 106009 [arXiv:1004.1108] [INSPIRE].ADSGoogle Scholar
  12. [12]
    V. De Comarmond, R. de Mello Koch and K. Jefferies, Surprisingly simple spectra, JHEP 02 (2011) 006 [arXiv:1012.3884] [INSPIRE].Google Scholar
  13. [13]
    W. Carlson, R. de Mello Koch and H. Lin, Nonplanar integrability, JHEP 03 (2011) 105 [arXiv:1101.5404] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. de Mello Koch, G. Kemp and S. Smith, From large-N nonplanar anomalous dimensions to open spring theory, Phys. Lett. B 711 (2012) 398 [arXiv:1111.1058] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant graviton oscillators, JHEP 10 (2011) 009 [arXiv:1108.2761] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in AdS/CFT, JHEP 06 (2012) 083 [arXiv:1204.2153] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    D. Berenstein, Giant gravitons: a collective coordinate approach, arXiv:1301.3519 [INSPIRE].
  18. [18]
    J. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of conformal N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    N. Beisert, C. Ahn, L.F. Alday, Z. Bajnok, J.M. Drummond et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    C. Kristjansen, Review of AdS/CFT integrability, chapter IV.1: aspects of non-planarity, Lett. Math. Phys. 99 (2012) 349 [arXiv:1012.3997] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  22. [22]
    K. Zoubos, Review of AdS/CFT integrability, chapter IV.2: deformations, orbifolds and open boundaries, Lett. Math. Phys. 99 (2012) 375 [arXiv:1012.3998] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    R. de Mello Koch and R. Gwyn, Giant graviton correlators from dual SU(N) super Yang-Mills theory, JHEP 11 (2004) 081 [hep-th/0410236] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  25. [25]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  27. [27]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    E. Witten, Baryons and branes in Anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].ADSGoogle Scholar
  33. [33]
    O. Aharony, Y.E. Antebi, M. Berkooz and R. Fishman, ’Holey sheets: pfaffians and subdeterminants as D-brane operators in large-N gauge theories, JHEP 12 (2002) 069 [hep-th/0211152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    G. Cicuta, Topological expansion for SO(N) and Sp(2N) gauge theories, Lett. Nuovo Cim. 35 (1982) 87 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  36. [36]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    C. Kristjansen, J. Plefka, G. Semenoff and M. Staudacher, A new double scaling limit of N =4 super Yang-Mills theory and pp wave strings, Nucl. Phys. B 643 (2002) 3 [hep-th/0205033] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn - Deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetMATHGoogle Scholar
  39. [39]
    E. Brézin, C. Itzykson, G. Parisi and J. Zuber, Planar diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  40. [40]
    P. Caputa, C. Kristjansen and K. Zoubos, On the spectral problem of N = 4 SYM with orthogonal or symplectic gauge group, JHEP 10 (2010) 082 [arXiv:1005.2611] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    R.C. King, The dimensions of irreducible tensor representations of the orthogonal and symplectic groups, Can. J. Math. 23 (1971) 176.MATHCrossRefGoogle Scholar
  42. [42]
    P. Cvitanovic and A.D. Kennedy, Spinors in negative dimensions, Phys. Scripta 26 (1982) 5.MathSciNetADSMATHCrossRefGoogle Scholar
  43. [43]
    G.V. Dunne, Negative dimensional groups in quantum physics, J. Phys. A 22 (1989) 1719 [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    R. Mkrtchian, The equivalence of Sp(2N ) and SO(2N) gauge theories, Phys. Lett. B 105 (1981) 174 [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. Ramgoolam, Comment on two-dimensional O(N) and Sp(N) Yang-Mills theories as string theories, Nucl. Phys. B 418 (1994) 30 [hep-th/9307085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    V.N. Ivanov Bispherical functions on the symmetric group associated with the hyperoctahedral subgroup, Jour. of Math. Sciences 96 (1999) 3505.CrossRefGoogle Scholar
  47. [47]
    W. Fulton and J. Harris, Representation theory: a first course, Springer, Berlin Germany (1991).MATHGoogle Scholar
  48. [48]
    P. Caputa and B.A.E. Mohammed, From Schurs to giants in ABJ(M), JHEP 01 (2013) 055 [arXiv:1210.7705] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    N. Beisert, C. Kristjansen, J. Plefka, G. Semenoff and M. Staudacher, BMN correlators and operator mixing in N = 4 super Yang-Mills theory, Nucl. Phys. B 650 (2003) 125 [hep-th/0208178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS correlators in N = 4 SYM theory, Nucl. Phys. B 641 (2002) 131 [hep-th/0205221] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    K. Okuyama, N = 4 SYM on R × S 3 and pp wave, JHEP 11 (2002) 043 [hep-th/0207067] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Dhar, G. Mandal and M. Smedback, From gravitons to giants, JHEP 03 (2006) 031 [hep-th/0512312] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    E. Brézin and V. Kazakov, Exactly solvable field theories of closed strings, Phys. Lett. B 236 (1990) 144 [INSPIRE].ADSGoogle Scholar
  54. [54]
    M.R. Douglas and S.H. Shenker, Strings in less than one-dimension, Nucl. Phys. B 335 (1990) 635 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    D.J. Gross and A.A. Migdal, Nonperturbative two-dimensional quantum gravity, Phys. Rev. Lett. 64 (1990) 127 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  56. [56]
    A. Bilal, 2-D gravity from matrix models: an introductory review, and particularities of antisymmetric matrix models, in Nonperturbative methods in low dimensional quantum field theories, proceedings of Debrecen 1990, (1990) 113 [CERN TH. 5867 (1990) 66].Google Scholar
  57. [57]
    F. Dolan and H. Osborn, Applications of the superconformal index for protected operators and q-hypergeometric identities to N = 1 dual theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    J. Ginibre, Statistical ensembles of complex, quaternion and real matrices, J. Math. Phys. 6 (1965) 440.MathSciNetADSMATHCrossRefGoogle Scholar
  59. [59]
    S. Mukhi and M. Smedback, Bubbling orientifolds, JHEP 08 (2005) 005 [hep-th/0506059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    A. Donos, A. Jevicki and J.P. Rodrigues, Matrix model maps in AdS/CFT, Phys. Rev. D 72 (2005) 125009 [hep-th/0507124] [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP 06 (2011) 085 [arXiv:1103.4079] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    P. Caputa, R. de Mello Koch and K. Zoubos, Extremal versus non-extremal correlators with giant gravitons, JHEP 08 (2012) 143 [arXiv:1204.4172] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S. Hirano, C. Kristjansen and D. Young, Giant gravitons on AdS 4 × CP 3 and their holographic three-point functions, JHEP 07 (2012) 006 [arXiv:1205.1959] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    H. Lin, Giant gravitons and correlators, JHEP 12 (2012) 011 [arXiv:1209.6624] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K. Skenderis and M. Taylor, Anatomy of bubbling solutions, JHEP 09 (2007) 019 [arXiv:0706.0216] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    A. Jevicki and B. Sakita, Collective field approach to the large-N limit: Euclidean field theories, Nucl. Phys. B 185 (1981) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Jevicki and J.P. Rodrigues, Loop space Hamiltonians and field theory of noncritical strings, Nucl. Phys. B 421 (1994) 278 [hep-th/9312118] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    R. de Mello Koch and J.P. Rodrigues, Systematic 1/n corrections for bosonic and fermionic vector models without auxiliary fields, Phys. Rev. D 54 (1996) 7794 [hep-th/9605079] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Pawel Caputa
    • 1
  • Robert de Mello Koch
    • 1
    • 2
  • Pablo Diaz
    • 1
  1. 1.National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical PhysicsUniversity of WitwatersrandWitsSouth Africa
  2. 2.Institute of Advanced StudyDurham UniversityDurhamU.K.

Personalised recommendations