The S parameter for a light composite Higgs: a dispersion relation approach

  • Axel Orgogozo
  • Slava Rychkov
Open Access


We derive a dispersion relation for the S parameter in the SO(5)/SO(4) Minimal Composite Higgs model. This generalizes the Peskin-Takeuchi formula to the case when a light Higgs boson is present in the spectrum. Our result combines an IR effect due to the reduction in the Higgs boson couplings with a UV contribution from the strong sector. It also includes a finite matching term, achieving a very good relative accuracy O(m h /m ρ ). We apply our formula in several toy examples, modeling the UV spectral density via Vector Meson Dominance.


Beyond Standard Model Technicolor and Composite Models 


  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSGoogle Scholar
  2. [2]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSGoogle Scholar
  3. [3]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  4. [4]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).
  8. [8]
    ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson for decays into WW and heavy fermion final states, ATLAS-CONF-2012-162 (2012).
  9. [9]
    A. Azatov, R. Contino and J. Galloway, Contextualizing the Higgs at the LHC, arXiv:1206.3171 [INSPIRE].
  10. [10]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Ellis and T. You, Global Analysis of the Higgs Candidate with Mass ~ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Gillioz, A light composite Higgs boson facing electroweak precision tests, Phys. Rev. D 80 (2009) 055003 [arXiv:0806.3450] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Anastasiou, E. Furlan and J. Santiago, Realistic Composite Higgs Models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal Conformal Technicolor and Precision Electroweak Tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].Google Scholar
  18. [18]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs Search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Panico, M. Safari and M. Serone, Simple and Realistic Composite Higgs Models in Flat Extra Dimensions, JHEP 02 (2011) 103 [arXiv:1012.2875] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Marzocca, M. Serone and J. Shu, General Composite Higgs Models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs Sketch, JHEP 11 (2012) 003 [arXiv:1205.4032] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].ADSGoogle Scholar
  24. [24]
    G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys. B 369 (1992) 3 [Erratum ibid. B 376 (1992) 444] [INSPIRE].
  25. [25]
    V. Novikov, L. Okun and M. Vysotsky, On the Electroweak one loop corrections, Nucl. Phys. B 397 (1993) 35 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V. Novikov, L. Okun, A.N. Rozanov and M. Vysotsky, Leptop, hep-ph/9503308 [INSPIRE].
  27. [27]
    A. Orgogozo and S. Rychkov, Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking, JHEP 03 (2012) 046 [arXiv:1111.3534] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081 [arXiv:1109.1570] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Weinberg, Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett. 18 (1967) 507 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D Conformal Field Theories with Global Symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    A. Vichi, Improved bounds for CFTs with global symmetries, JHEP 01 (2012) 162 [arXiv:1106.4037] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Pomarol and F. Riva, The Composite Higgs and Light Resonance Connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Pich, I. Rosell and J.J. Sanz-Cillero, One-Loop Calculation of the Oblique S Parameter in Higgsless Electroweak Models, JHEP 08 (2012) 106 [arXiv:1206.3454] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Ecker, J. Gasser, A. Pich and E. de Rafael, The Role of Resonances in Chiral Perturbation Theory, Nucl. Phys. B 321 (1989) 311 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Barbieri, G. Isidori, V.S. Rychkov and E. Trincherini, Heavy Vectors in Higgs-less models, Phys. Rev. D 78 (2008) 036012 [arXiv:0806.1624] [INSPIRE].ADSGoogle Scholar
  42. [42]
    G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral Lagrangians for Massive Spin 1 Fields, Phys. Lett. B 223 (1989) 425 [INSPIRE].ADSGoogle Scholar
  43. [43]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Mrazek et al., The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Chala, hγγ excess and Dark Matter from Composite Higgs Models, JHEP 01 (2013) 122 [arXiv:1210.6208] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Burdman and L. Da Rold, Renormalization of the S Parameter in Holographic Models of Electroweak Symmetry Breaking, JHEP 11 (2008) 025 [arXiv:0809.4009] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P. Lodone, Vector-like quarks in acompositeHiggs model, JHEP 12 (2008) 029, [arXiv:0806.1472] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Laboratoire de Physique ThéoriqueParisFrance
  2. 2.CERN, Theory DivisionGenevaSwitzerland
  3. 3.Faculté de PhysiqueUniversité Pierre et Marie CurieParisFrance

Personalised recommendations