Advertisement

\( \mathcal{Z} \) extremization in chiral-like Chern-Simons theories

  • Antonio Amariti
  • Massimo Siani
Article

Abstract

We study the localized free energy on S 3 of three-dimensional \( \mathcal{N} \) = 2 ChernSimons matter theories at weak coupling. We compute the two loop R charge in three different ways, namely by the standard perturbative approach, by extremizing the localized partition function at finite N and by applying the standard ansatz for the saddle point approximation for large N. We show that the latter approach does not reproduce the expected result when chiral theories are considered. We circumvent these problems by restoring a reflection symmetry on the eigenvalues in the free energy. Thanks to this symmetrization we find that the three methods employed agree. In particular we match the computation for a model whose four dimensional parent is the quiver gauge theory describing D3 branes probing the Hirzebruch surface. We conclude by commenting on the application of our results and to the strong coupling regime.

Keywords

Supersymmetric gauge theory Matrix Models Chern-Simons Theories 

References

  1. [1]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  4. [4]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP 10 (2011)038 [arXiv:1105.4598] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    D.R. Gulotta, C.P. Herzog and S.S. Pufu, From Necklace Quivers to the F-theorem, Operator Counting and T(U(N)), JHEP 12 (2011) 077 [arXiv:1105.2817] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    A. Amariti and M. Siani, F-maximization along the RG flows: A Proposal, JHEP 11 (2011) 056 [arXiv:1105.3979] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, Phys. Rev. D 84 (2011) 046008 [arXiv:1102.5289] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. Cheon, H. Kim and N. Kim, Calculating the partition function of N = 2 Gauge theories on S 3 and AdS/CFT correspondence, JHEP 05 (2011) 134 [arXiv:1102.5565] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix Model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Amariti, On the exact R charge for N = 2 CS theories, JHEP 06 (2011) 110 [arXiv:1103.1618] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    V. Niarchos, Comments on F-maximization and R-symmetry in 3D SCFTs, J. Phys. A 44 (2011)305404 [arXiv:1103.5909] [INSPIRE].MathSciNetGoogle Scholar
  16. [16]
    S. Minwalla, P. Narayan, T. Sharma, V. Umesh and X. Yin, Supersymmetric States in Large-N Chern-Simons-Matter Theories, JHEP 02 (2012) 022 [arXiv:1104.0680] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Amariti and M. Siani, Z-extremization and F-theorem in Chern-Simons matter theories, JHEP 10 (2011) 016 [arXiv:1105.0933] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    T. Morita and V. Niarchos, F-theorem, duality and SUSY breaking in one-adjoint Chern-Simons-Matter theories, Nucl. Phys. B 858 (2012) 84 [arXiv:1108.4963] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    T. Suyama, Eigenvalue Distributions in Matrix Models for Chern-Simons-matter Theories, Nucl. Phys. B 856 (2012) 497 [arXiv:1106.3147] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    D.L. Jafferis, Quantum corrections to N = 2 Chern-Simons theories with flavor and their AdS 4 duals, arXiv:0911.4324 [INSPIRE].
  23. [23]
    A. Niemi and G. Semenoff, Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times, Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L. Avdeev, D. Kazakov and I. Kondrashuk, Renormalizations in supersymmetric and nonsupersymmetric nonAbelian Chern-Simons field theories with matter, Nucl. Phys. B 391 (1993)333 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP 08 (2007)056 [arXiv:0704.3740] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    M. Mariño, Chern-Simons theory, matrix integrals and perturbative three manifold invariants, Commun. Math. Phys. 253 (2004) 25 [hep-th/0207096] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP 02 (2004) 010 [hep-th/0211098] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    N. Akerblom, C. Sämann and M. Wolf, Marginal Deformations and 3-Algebra Structures, Nucl. Phys. B 826 (2010) 456 [arXiv:0906.1705] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M.S. Bianchi, S. Penati and M. Siani, Infrared stability of ABJ-like theories, JHEP 01 (2010) 080 [arXiv:0910.5200] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M.S. Bianchi, S. Penati and M. Siani, Infrared Stability of N = 2 Chern-Simons Matter Theories, JHEP 05 (2010) 106 [arXiv:0912.4282] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Franco, I.R. Klebanov and D. Rodriguez-Gomez, M2-branes on Orbifolds of the Cone over Q 1,1,1, JHEP 08 (2009) 033 [arXiv:0903.3231] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    A. Amariti, D. Forcella, L. Girardello and A. Mariotti, 3D Seiberg-like Dualities and M2 Branes, JHEP 05 (2010) 025 [arXiv:0903.3222] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    J. Davey, A. Hanany, N. Mekareeya and G. Torri, Phases of M2-brane Theories, JHEP 06 (2009)025 [arXiv:0903.3234] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    F. Benini, C. Closset and S. Cremonesi, Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS 4 /CFT 3, JHEP 09 (2011) 005 [arXiv:1105.2299] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    D. Kutasov, New results on thea theoremin four-dimensional supersymmetric field theory, hep-th/0312098 [INSPIRE].
  38. [38]
    D. Kutasov and A. Schwimmer, Lagrange multipliers and couplings in supersymmetric field theory, Nucl. Phys. B 702 (2004) 369 [hep-th/0409029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    D.R. Gulotta, C.P. Herzog and S.S. Pufu, Operator Counting and Eigenvalue Distributions for 3D Supersymmetric Gauge Theories, JHEP 11 (2011) 149 [arXiv:1106.5484] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSan Diego La JollaU.S.A
  2. 2.Instituut voor Theoretische FysicaKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations