Probing Majorana neutrinos in rare π + → e + e + μ ν decays

  • Gorazd Cvetič
  • Claudio Dib
  • C. S. Kim


We study the rare decays of charged π mesons, π + → e + e + μ \( \overline v \) μ and π + → e + μ e + ν e induced by a sterile neutrino N with a mass in the range m μ  < m N  < m π . The first process violates Lepton Number by two units and so occurs only if N is Majorana, while the second process conserves Lepton Number and occurs irrespective of the Majorana or Dirac character of N . We study a way to distinguish the Majorana vs. Dirac character of N in these processes using the muon spectrum. We also find that the branching ratios could be at the reach of high luminosity experiments like Project X at FNAL or any proposed neutrino (or muon) factories worldwide.


Rare Decays Neutrino Physics 


  1. [1]
    B. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    GALLEX collaboration, W. Hampel et al., GALLEX solar neutrino observations: results for GALLEX IV, Phys. Lett. B 447 (1999) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    SAGE collaboration, J. Abdurashitov et al., Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22 year solar cycle, J. Exp. Theor. Phys. 95 (2002) 181 [Zh. Eksp. Teor. Fiz. 122 (2002) 211] [astro-ph/0204245] [INSPIRE].
  4. [4]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Super-Kamiokande collaboration, S. Fukuda et al., Constraints on neutrino oscillations using 1258 days of Super-Kamiokande solar neutrino data, Phys. Rev. Lett. 86 (2001) 5656 [hep-ex/0103033] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Super-Kamiokande collaboration, S. Fukuda et al., Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande I data, Phys. Lett. B 539 (2002) 179 [hep-ex/0205075] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Super-Kamiokande collaboration, Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    SNO collaboration, Q.R. Ahmad et al., Measurement of the rate of v e + dp + p+ interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    SNO collaboration, S. Ahmed et al., Measurement of the total active 8 B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity, Phys. Rev. Lett. 92 (2004) 181301 [nucl-ex/0309004] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Racah, On the symmetry of particle and antiparticle (in Italian), Nuovo Cim. 14 (1937) 322 [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    W. Furry, On transition probabilities in double beta-disintegration, Phys. Rev. 56 (1939) 1184 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    H. Primakoff and S.P. Rosen, Double beta decay, Rept. Prog. Phys. 22 (1959) 121.ADSCrossRefGoogle Scholar
  15. [15]
    H. Primakoff and S.P. Rosen, Nuclear double-beta decay and a new limit on lepton nonconservation, Phys. Rev. 184 (1969) 1925 [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    H. Primakoff and P.S. Rosen, Baryon number and lepton number conservation laws, Ann. Rev. Nucl. Part. Sci. 31 (1981) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Doi, T. Kotani and E. Takasugi, Double beta decay and Majorana neutrino, Prog. Theor. Phys. Suppl. 83 (1985) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S.R. Elliott and J. Engel, Double beta decay, J. Phys. G 30 (2004) R183 [hep-ph/0405078] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    V.A. Rodin, A. Faessler, F. Simkovic and P. Vogel, Assessment of uncertainties in QRPA 0νββ-decay nuclear matrix elements, Nucl. Phys. A 766 (2006) 107 [Erratum ibid. A 793 (2007)213] [arXiv:0706.4304] [INSPIRE].
  20. [20]
    M. Kortelainen, O. Civitarese, J. Suhonen and J. Toivanen, Short-range correlations and neutrinoless double beta decay, Phys. Lett. B 647 (2007) 128 [nucl-th/0701052] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Kortelainen and J. Suhonen, Improved short-range correlations and 0νββ nuclear matrix elements of 76 Ge and 82 Se, Phys. Rev. C 75 (2007) 051303 [arXiv:0705.0469] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Kortelainen and J. Suhonen, Nuclear matrix elements of neutrinoless double beta decay with improved short-range correlations, Phys. Rev. C 76 (2007) 024315 [arXiv:0708.0115] [INSPIRE].ADSGoogle Scholar
  23. [23]
    E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves and A. Zuker, The shell model as unified view of nuclear structure, Rev. Mod. Phys. 77 (2005) 427 [nucl-th/0402046] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Faessler et al., Overconstrained estimates of neutrinoless double beta decay within the QRPA, J. Phys. G 35 (2008) 075104 [arXiv:0711.3996] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-right symmetry: from LHC to neutrinoless double beta decay, Phys. Rev. Lett. 106 (2011) 151801 [arXiv:1011.3522] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Nemevšek, F. Nesti, G. Senjanović and V. Tello, Neutrinoless double beta decay: low left-right symmetry scale?, arXiv:1112.3061 [INSPIRE].
  28. [28]
    G. Senjanović, Neutrino mass: from LHC to grand unification, Riv. Nuovo Cim. 034 (2011) 1 [INSPIRE].Google Scholar
  29. [29]
    L.S. Littenberg and R.E. Shrock, Upper bounds on lepton number violating meson decays, Phys. Rev. Lett. 68 (1992) 443 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L.S. Littenberg and R. Shrock, Implications of improved upper bounds onL| = 2 processes, Phys. Lett. B 491 (2000) 285 [hep-ph/0005285] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C. Dib, V. Gribanov, S. Kovalenko and I. Schmidt, K meson neutrinoless double muon decay as a probe of neutrino masses and mixings, Phys. Lett. B 493 (2000) 82 [hep-ph/0006277] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Ali, A. Borisov and N. Zamorin, Majorana neutrinos and same sign dilepton production at LHC and in rare meson decays, Eur. Phys. J. C 21 (2001) 123 [hep-ph/0104123] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. de Gouvêa and J. Jenkins, A survey of lepton number violation via effective operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Cvetič, C. Dib, S.K. Kang and C. Kim, Probing Majorana neutrinos in rare K and D, D s, B, B c meson decays, Phys. Rev. D 82 (2010) 053010 [arXiv:1005.4282] [INSPIRE].ADSGoogle Scholar
  36. [36]
    Project X and the science of the intensity frontier, white paper based on the Project X Physics Workshop,, Fermilab, Batavia U.S.A. November 9-10 2009.
  37. [37]
    J.C. Helo, S. Kovalenko and I. Schmidt, Sterile neutrinos in lepton number and lepton flavor violating decays, Nucl. Phys. B 853 (2011) 80 [arXiv:1005.1607] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Dolgov and S. Hansen, Massive sterile neutrinos as warm dark matter, Astropart. Phys. 16 (2002) 339 [hep-ph/0009083] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A.Y. Smirnov and R. Zukanovich Funchal, Sterile neutrinos: direct mixing effects versusinduced mass matrix of active neutrinos, Phys. Rev. D 74 (2006) 013001 [hep-ph/0603009] [INSPIRE].ADSGoogle Scholar
  42. [42]
    U. Seljak, A. Slosar and P. McDonald, Cosmological parameters from combining the Lyman-α forest with CMB, galaxy clustering and SN constraints, JCAP 10 (2006) 014 [astro-ph/0604335] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    T. Schwetz, M. Tortola and J.W. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    W. Winter, Lectures on neutrino phenomenology, Nucl. Phys. Proc. Suppl. 203-204 (2010) 45 [arXiv:1004.4160] [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    PIENU collaboration, M. Aoki et al., Search for massive neutrinos in the decay π, Phys. Rev. D 84 (2011) 052002 [arXiv:1106.4055] [INSPIRE].ADSGoogle Scholar
  46. [46]
    ATLAS collaboration, G. Aad et al., The ATLAS experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Geer, private communication.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Centro Cientıfico-Tecnológico de Valpara´ıso and Department of PhysicsUniversidad Técnica Federico Santa MarıaValparaísoChile
  2. 2.Dept. of Physics and IPAPYonsei UniversitySeoulKorea

Personalised recommendations