Advertisement

The holographic dual of 2 + 1 dimensional QFTs with \( \mathcal{N} = {1} \) SUSY and massive fundamental flavours

  • Niall T. Macpherson
Article

Abstract

The Maldacena Nastase solution is generalised to include massive fundamental matter through the addition of a flavour profile. This gives a holographic dual to \( \mathcal{N} = {1} \) SYM-CS with massive fundamental matter with a singularity free IR. We study this solution in some detail confirming confinement and asymptotic freedom. A recently proposed solution generating technique is then applied which results in a new type-IIA supergravity solution. In a certain limit, the geometry of this solution is asymptotically AdS 4 × Y, where Y is the metric at the base of the Bryant-Salamon G 2 cone, which has topology S 3 × S 3.

Keywords

Gauge-gravity correspondence Confinement Chern-Simons Theories Supergravity Models 

References

  1. [1]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  3. [3]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    D. Serban, Integrability and the AdS/CFT correspondence, J. Phys. A 44 (2011) 124001 [arXiv:1003.4214] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    C. Núñez, A. Paredes and A.V. Ramallo, Flavoring the gravity dual of N = 1 Yang-Mills with probes, JHEP 12 (2003) 024 [hep-th/0311201] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    R. Casero, C. Núñez and A. Paredes, Towards the string dual of N = 1 SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Hoyos-Badajoz, C. Núñez and I. Papadimitriou, Comments on the String dual to N = 1 SQCD, Phys. Rev. D 78 (2008) 086005 [arXiv:0807.3039] [INSPIRE].ADSGoogle Scholar
  10. [10]
    I.R. Klebanov and J.M. Maldacena, Superconformal gauge theories and non-critical superstrings, Int. J. Mod. Phys. A 19 (2004) 5003 [hep-th/0409133] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    F. Bigazzi, R. Casero, A. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFTs with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    E. Conde, J. Gaillard and A.V. Ramallo, On the holographic dual of N = 1 SQCD with massive flavors, JHEP 10 (2011) 023 [arXiv:1107.3803] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Barranco, E. Pallante and J.G. Russo, N = 1 SQCD-like theories with N f massive flavors from AdS/CFT and β-functions, JHEP 09 (2011) 086 [arXiv:1107.4002] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Schvellinger and T.A. Tran, Supergravity duals of gauge field theories from SU(2) × U(1) gauged supergravity in five-dimensions, JHEP 06 (2001) 025 [hep-th/0105019] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.M. Maldacena and H.S. Nastase, The Supergravity dual of a theory with dynamical supersymmetry breaking, JHEP 09 (2001) 024 [hep-th/0105049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    F. Canoura, P. Merlatti and A.V. Ramallo, The Supergravity dual of 3d supersymmetric gauge theories with unquenched flavors, JHEP 05 (2008) 011 [arXiv:0803.1475] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A.H. Chamseddine and M.S. Volkov, NonAbelian vacua in D = 5, N = 4 gauged supergravity, JHEP 04 (2001) 023 [hep-th/0101202] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    E. Witten, Supersymmetric index of three-dimensional gauge theory, hep-th/9903005 [INSPIRE].
  19. [19]
    C. Núñez, A. Paredes and A.V. Ramallo, Unquenched Flavor in the Gauge/Gravity Correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].Google Scholar
  20. [20]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  21. [21]
    D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product expansion for Wilson loops and surfaces in the large-N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    C. Núñez, M. Piai and A. Rago, Wilson Loops in string duals of Walking and Flavored Systems, Phys. Rev. D 81 (2010) 086001 [arXiv:0909.0748] [INSPIRE].ADSGoogle Scholar
  23. [23]
    F. Bigazzi, A.L. Cotrone, C. Núñez and A. Paredes, Heavy quark potential with dynamical flavors: A First order transition, Phys. Rev. D 78 (2008) 114012 [arXiv:0806.1741] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Gaillard and D. Martelli, Fivebranes and resolved deformed G 2 manifolds, JHEP 05 (2011) 109 [arXiv:1008.0640] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    J. Gutowski, G. Papadopoulos and P. Townsend, Supersymmetry and generalized calibrations, Phys. Rev. D 60 (1999) 106006 [hep-th/9905156] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    J.P. Gauntlett, Branes, calibrations and supergravity, hep-th/0305074 [INSPIRE].
  27. [27]
    P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized-structure compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    J. Gaillard and J. Schmude, On the geometry of string duals with backreacting flavors, JHEP 01 (2009) 079 [arXiv:0811.3646] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    D. Martelli and J. Sparks, G structures, fluxes and calibrations in M-theory, Phys. Rev. D 68 (2003) 085014 [hep-th/0306225] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    D. Marolf, Chern-Simons terms and the three notions of charge, hep-th/0006117 [INSPIRE].
  31. [31]
    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    J. Gaillard, D. Martelli, C. Núñez and I. Papadimitriou, The warped, resolved, deformed conifold gets flavoured, Nucl. Phys. B 843 (2011) 1 [arXiv:1004.4638] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Maldacena and D. Martelli, The Unwarped, resolved, deformed conifold: Fivebranes and the baryonic branch of the Klebanov-Strassler theory, JHEP 01 (2010) 104 [arXiv:0906.0591] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    D. Elander, J. Gaillard, C. Núñez and M. Piai, Towards multi-scale dynamics on the baryonic branch of Klebanov-Strassler, JHEP 07 (2011) 056 [arXiv:1104.3963] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    E. Caceres, C. Núñez and L.A. Pando-Zayas, Heating up the Baryonic Branch with U-duality: A Unified picture of conifold black holes, JHEP 03 (2011) 054 [arXiv:1101.4123] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E. Conde, J. Gaillard, C. Núñez, M. Piai and A.V. Ramallo, A Tale of Two Cascades: Higgsing and Seiberg-Duality Cascades from type IIB String Theory, JHEP 02 (2012) 145 [arXiv:1112.3350] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E. Conde and A.V. Ramallo, On the gravity dual of Chern-Simons-matter theories with unquenched flavor, JHEP 07 (2011) 099 [arXiv:1105.6045] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Backreacting flavors in the Klebanov-Strassler background, JHEP 09 (2007) 109 [arXiv:0706.1238] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    O. Aharony, A. Hashimoto, S. Hirano and P. Ouyang, D-brane Charges in Gravitational Duals of 2+1 Dimensional Gauge Theories and Duality Cascades, JHEP 01 (2010) 072 [arXiv:0906.2390] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    A. Butti, M. Graña, R. Minasian, M. Petrini and A. Zaffaroni, The Baryonic branch of Klebanov-Strassler solution: A supersymmetric family of SU(3) structure backgrounds, JHEP 03 (2005) 069 [hep-th/0412187] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Agarwal and V. Nair, Supersymmetry and Mass Gap in 2+1 Dimensions: A Gauge Invariant Hamiltonian Analysis, Phys. Rev. D 85 (2012) 085011 [arXiv:1201.6609] [INSPIRE].ADSGoogle Scholar
  43. [43]
    R. Bryand and S. Salamon, On the construction of some complete metrices with expectional holonomy, Duke Math. J. 58 (1989) 829 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  44. [44]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetMATHGoogle Scholar
  45. [45]
    E. Caceres and C. Núñez, Glueballs of super Yang-Mills from wrapped branes, JHEP 09 (2005) 027 [hep-th/0506051] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsSwansea UniversitySwanseaUnited Kingdom

Personalised recommendations