Advertisement

Higgs boson production at the LHC: transverse momentum resummation effects in the Hγγ, HWWlνlν and HZZ → 4l decay modes

  • Daniel de Florian
  • Giancarlo Ferrera
  • Massimiliano Grazzini
  • Damiano Tommasini
Article

Abstract

We consider Standard Model Higgs boson production through gluon-gluon fusion in hadron collisions. We combine the calculation of the next-to-next-to-leading order QCD corrections to the inclusive cross section with the resummation of multiple soft-gluon emissions at small transverse momenta up to next-to-next-to-leading logarithmic accuracy. The calculation is implemented in the numerical program HRes and allows us to retain the full kinematics of the Higgs boson and of its decay products. We present selected numerical results for the signal cross section at the LHC (\( \sqrt {s} = {8}\;{\text{TeV}} \)), in the Hγγ, HWWlνlν and HZZ → 4l decay channels by using the nominal cuts applied in current Higgs boson searches by the ATLAS and CMS collaborations.

Keywords

Higgs Physics Resummation 

References

  1. [1]
    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    TEVNPH, CDF, and D0 collaborations, Combined CDF and D0 search for standard model Higgs boson production with up to 10 fb −1 of data, arXiv:1203.3774 [FERMILAB-CONF-12-065-E] [INSPIRE].
  7. [7]
    H. Georgi, S. Glashow, M. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473 [arXiv:0907.2998] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Catani, D. de Florian and M. Grazzini, Direct Higgs production and jet veto at the Tevatron and the LHC in NNLO QCD, JHEP 01 (2002) 015 [hep-ph/0111164] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C. Anastasiou, G. Dissertori and F. Stockli, NNLO QCD predictions for the HWWlνlν signal at the LHC, JHEP 09(2007) 018 [arXiv:0707.2373] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Grazzini, NNLO predictions for the Higgs boson signal in the HW Wlνlν and HZZ → 4l decay channels, JHEP 02(2008) 043 [arXiv:0801.3232][INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Y.L. Dokshitzer, D. Diakonov and S. Troian, On the transverse momentum distribution of massive lepton pairs, Phys. Lett. B 79 (1978) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y.L. Dokshitzer, D. Diakonov and S. Troian, Hard processes in quantum chromodynamics, Phys. Rep. 58 (1980) 269.ADSCrossRefGoogle Scholar
  28. [28]
    G. Parisi and R. Petronzio, Small transverse momentum distributions in hard processes, Nucl. Phys. B 154 (1979) 427 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Curci, M. Greco and Y. Srivastava, QCD jets from coherent states, Nucl. Phys. B 159 (1979) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.C. Collins and D.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.C. Collins and D.E. Soper, Back-to-back jets: Fourier transform from B to K-transverse, Nucl. Phys. B 197 (1982) 446 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Kodaira and L. Trentadue, Summing soft emission in QCD, Phys. Lett. B 112 (1982) 66 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Kodaira and L. Trentadue, Soft gluon effects in perturbative quantum chromodynamics, SLAC-PUB-2934 (1982).Google Scholar
  35. [35]
    J. Kodaira and L. Trentadue, Single logarithm effects in electron-positron annihilation, Phys. Lett. B 123 (1983) 335 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Catani, E. D’Emilio and L. Trentadue, The gluon form-factor to higher orders: gluon gluon annihilation at small Q-transverse, Phys. Lett. B 211 (1988) 335 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion processes, Nucl. Phys. B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. de Florian and M. Grazzini, Next-to-next-to-leading logarithmic corrections at small transverse momentum in hadronic collisions, Phys. Rev. Lett. 85 (2000) 4678 [hep-ph/0008152] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    V. Ravindran, J. Smith and W. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Grazzini, Higgs production at hadron colliders: tools, http://theory.fi.infn.it/grazzini/codes.html.Google Scholar
  46. [46]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Higgs boson production at the LHC: transverse-momentum resummation and rapidity dependence, Nucl. Phys. B 791 (2008) 1 [arXiv:0705.3887] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    S. Catani and M. Grazzini, Higgs boson production at hadron colliders: hard-collinear coefficients at the NNLO, ZU-TH-12-11 (2012).Google Scholar
  49. [49]
    T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    R. Kauffman, Higher order corrections to Higgs boson p T , Phys. Rev. D 45 (1992) 1512 [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    C. Yuan, Kinematics of the Higgs boson at hadron colliders: NLO QCD gluon resummation, Phys. Lett. B 283 (1992) 395 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  54. [54]
    ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb −1 ofpp collisions at \( \sqrt {s} = 7 \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Vesterinen and T. Wyatt, A novel technique for studying the Z boson transverse momentum distribution at hadron colliders, Nucl. Instrum. Meth. A 602 (2009) 432 [arXiv:0807.4956] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Banfi, M. Dasgupta and R.M. Duran Delgado, The a(T ) distribution of the Z boson at hadron colliders, JHEP 12 (2009) 022 [arXiv:0909.5327] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Catani and B. Webber, Infrared safe but infinite: soft gluon divergences inside the physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
  59. [59]
    M. Dittmar and H.K. Dreiner, How to find a Higgs boson with a mass between 155 GeV-180 GeV at the LHC, Phys. Rev. D 55 (1997) 167 [hep-ph/9608317] [INSPIRE].ADSGoogle Scholar
  60. [60]
    Q.-H. Cao and C.-R. Chen, Resummation effects in the search of SM Higgs boson at hadron colliders, Phys. Rev. D 76 (2007) 073006 [arXiv:0704.1344] [INSPIRE].ADSGoogle Scholar
  61. [61]
    C. Balázs and C. Yuan, Higgs boson production at the LHC with soft gluon effects, Phys. Lett. B 478 (2000) 192 [hep-ph/0001103] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Moch, J. Vermaseren and A. Vogt, The three loop splitting functions in QCD: the nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    U. Baur and E.N. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].
  64. [64]
    A. Bredenstein, A. Denner, S. Dittmaier and M. Weber, Precise predictions for the Higgs-boson decay HW W/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].ADSGoogle Scholar
  65. [65]
    A. Bredenstein, A. Denner, S. Dittmaier and M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays HW W/ZZ → 4 fermions, JHEP 02 (2007) 080 [hep-ph/0611234] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A. Kulesza and W.J. Stirling, Nonperturbative effects and the resummed Higgs transverse momentum distribution at the LHC, JHEP 12 (2003) 056 [hep-ph/0307208] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A. Banfi, G.P. Salam and G. Zanderighi, NLL + NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, arXiv:1203.5773 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Daniel de Florian
    • 1
    • 2
  • Giancarlo Ferrera
    • 2
    • 3
  • Massimiliano Grazzini
    • 2
  • Damiano Tommasini
    • 2
    • 4
  1. 1.Departamento de F´ısica, FCEYNUniversidad de Buenos AiresCapital FederalArgentina
  2. 2.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  3. 3.Dipartimento di FisicaUniversità di Milano and INFN — Sezione di MilanoMilanItaly
  4. 4.Dipartimento di Fisica e AstronomiaUniversità di Firenze and INFN — Sezione di FirenzeSesto FiorentinoItaly

Personalised recommendations