Advertisement

AdS/BCFT correspondence for higher curvature gravity: an example

  • Yongjoon Kwon
  • Soonkeon Nam
  • Jong-Dae Park
  • Sang-Heon Yi
Article

Abstract

We consider the effects of higher curvature terms on a holographic dual description of boundary conformal field theory. Specifically, we consider three-dimensional gravity with a specific combination of Ricci tensor square and curvature scalar square, so called, new massive gravity. We show that a boundary entropy and an entanglement entropy are given by similar expressions with those of the Einstein gravity case when we introduce an effective Newton’s constant and an effective cosmological constant. We also show that the holographic g-theorem still holds in this extension, and we give some comments about the central charge dependence of boundary entropy in the holographic construction. In the same way, we consider new type black holes and comment on the boundary profile. More-over, we reproduce these results through auxiliary field formalism in this specific higher curvature gravity.

Keywords

AdS-CFT Correspondence Classical Theories of Gravity Black Holes 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  3. [3]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].
  5. [5]
    L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6]
    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Alishahiha and R. Fareghbal, Boundary CFT from holography, Phys. Rev. D 84 (2011) 106002 [arXiv:1108.5607] [INSPIRE].ADSGoogle Scholar
  11. [11]
    I. Affleck and A.W. Ludwig, Universal noninteger ’ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  12. [12]
    D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    R. Jackiw, S. Templeton and S. Deser, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975.ADSCrossRefGoogle Scholar
  15. [15]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061 [arXiv:1003.0683] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Gullu, T.C. Sisman and B. Tekin, Born-Infeld extension of new massive gravity, Class. Quant. Grav. 27 (2010) 162001 [arXiv:1003.3935] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    H. Lü and C. Pope, Critical gravity in four dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    H. Lü, Y. Pang and C. Pope, Conformal gravity and extensions of critical gravity, Phys. Rev. D 84 (2011) 064001 [arXiv:1106.4657] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Deser et al., Critical points of D-dimensional extended gravities, Phys. Rev. D 83 (2011) 061502 [arXiv:1101.4009] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Ogawa and T. Takayanagi, Higher derivative corrections to holographic entanglement entropy for AdS solitons, JHEP 10 (2011) 147 [arXiv:1107.4363] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, On higher derivatives in 3D gravity and higher spin gauge theories, Annals Phys. 325 (2010) 1118 [arXiv:0911.3061] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  29. [29]
    E. Bergshoeff, O. Hohm and P. Townsend, On massive gravitons in 2 + 1 dimensions, J. Phys. Conf. Ser. 229 (2010) 012005 [arXiv:0912.2944] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Y. Kwon, S. Nam, J.-D. Park and S.-H. Yi, Holographic renormalization and stress tensors in new massive gravity, JHEP 11 (2011) 029 [arXiv:1106.4609] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    Y. Kwon, S. Nam, J.-D. Park and S.-H. Yi, Quasi normal modes for new type black holes in new massive gravity, Class. Quant. Grav. 28 (2011) 145006 [arXiv:1102.0138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S. Nam, J.-D. Park and S.-H. Yi, AdS black hole solutions in the extended new massive gravity, JHEP 07 (2010) 058 [arXiv:1005.1619] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Nam, J.-D. Park and S.-H. Yi, Mass and angular momentum of black holes in new massive gravity, Phys. Rev. D 82 (2010) 124049 [arXiv:1009.1962] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].
  35. [35]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    T. Azeyanagi, A. Karch, T. Takayanagi and E.G. Thompson, Holographic calculation of boundary entropy, JHEP 03 (2008) 054 [arXiv:0712.1850] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407.MathSciNetADSGoogle Scholar
  38. [38]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  39. [39]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  42. [42]
    S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    Y. Liu and Y.-w. Sun, Note on new massive gravity in AdS 3, JHEP 04 (2009) 106 [arXiv:0903.0536] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Chiodaroli, E. D’Hoker and M. Gutperle, Simple holographic duals to boundary CFTs, JHEP 02 (2012) 005 [arXiv:1111.6912] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J. Oliva, D. Tempo and R. Troncoso, Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity, JHEP 07 (2009) 011 [arXiv:0905.1545] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Perez, D. Tempo and R. Troncoso, Gravitational solitons, hairy black holes and phase transitions in BHT massive gravity, JHEP 07 (2011) 093 [arXiv:1106.4849] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].
  49. [49]
    S.-J. Hyun, W.-J. Jang, J.-H. Jeong and S.-H. Yi, Noncritical Einstein-Weyl gravity and the AdS/CFT correspondence, JHEP 01 (2012) 054 [arXiv:1111.1175] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    R.R. Metsaev, Stückelberg approach to 6D conformal gravity, talk given at the workshop Supersymmetries and Quantum Symmetries, July 18-23, Dubna, Russia (2011).Google Scholar
  51. [51]
    R. Metsaev, Ordinary-derivative formulation of conformal low spin fields, JHEP 01 (2012) 064 [arXiv:0707.4437] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Yongjoon Kwon
    • 1
  • Soonkeon Nam
    • 1
  • Jong-Dae Park
    • 1
  • Sang-Heon Yi
    • 2
  1. 1.Department of Physics and Research Institute of Basic ScienceKyung Hee UniversitySeoulKorea
  2. 2.Center for Quantum SpacetimeSogang UniversitySeoulKorea

Personalised recommendations