Advertisement

Heterotic line bundle standard models

  • Lara B. Anderson
  • James Gray
  • Andre Lukas
  • Eran Palti
Open Access
Article

Abstract

In a previous publication, arXiv:1106.4804, we have found 200 models from heterotic Calabi-Yau compactifications with line bundles, which lead to standard models after taking appropriate quotients by a discrete symmetry and introducing Wilson lines. In this paper, we construct the resulting standard models explicitly, compute their spectrum including Higgs multiplets, and analyze some of their basic properties. After removing redundancies we find about 400 downstairs models, each with the precise matter spectrum of the supersymmetric standard model, with one, two or three pairs of Higgs doublets and no exotics of any kind. In addition to the standard model gauge group, up to four Green-Schwarz anomalous U(1) symmetries are present in these models, which constrain the llowed operators in the four-dimensional effective supergravity. The vector bosons associated to these anomalous U(1) symmetries are massive. We explicitly compute the spectrum of allowed operators for each model and present the results, together with the defining data of the models, in a database of standard models accessible here. Based on these results we analyze elementary phenomenological properties. For example, for about 200 models all dimension four and five proton decay violating operators are forbidden by the additional U(1) symmetries.

Keywords

Superstrings and Heterotic Strings Superstring Vacua 

References

  1. [1]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 2: Loop amplitudes, anomalies and phenomenology,Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1987), pg. 596.Google Scholar
  3. [3]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A Three Generation Superstring Model. 1. Compactification and Discrete Symmetries, Nucl. Phys. B 278 (1986) 667 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A Three Generation Superstring Model. 2. Symmetry Breaking and the Low-Energy Theory, Nucl. Phys. B 292 (1987) 606 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    V. Braun, P. Candelas, R. Davies and R. Donagi, The MSSM Spectrum from (0,2)-Deformations of the Heterotic Standard Embedding, JHEP 05 (2012) 127 [arXiv:1112.1097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A Heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A Standard model from the E 8 × E 8 heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, Vector bundle extensions, sheaf cohomology and the heterotic standard model, Adv. Theor. Math. Phys. 10 (2006) 4 [hep-th/0505041] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Distler and B.R. Greene, Aspects of (2,0) String Compactifications, Nucl. Phys. B 304 (1988) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S. Kachru, Some three generation (0,2) Calabi-Yau models, Phys. Lett. B 349 (1995) 76 [hep-th/9501131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    V. Bouchard, M. Cvetič and R. Donagi, Tri-linear couplings in an heterotic minimal supersymmetric standard model, Nucl. Phys. B 745 (2006) 62 [hep-th/0602096] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Blumenhagen, S. Moster and T. Weigand, Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds, Nucl. Phys. B 751 (2006) 186 [hep-th/0603015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    R. Blumenhagen, S. Moster, R. Reinbacher and T. Weigand, Massless Spectra of Three Generation U(N) Heterotic String Vacua, JHEP 05 (2007) 041 [hep-th/0612039] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    L.B. Anderson, Y.-H. He and A. Lukas, Heterotic compactification, an algorithmic approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    L.B. Anderson, Y.-H. He and A. Lukas, Monad bundles in heterotic string compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring positive monad bundles and a new heterotic standard model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string (II), Nucl. Phys. B 785 (2007) 149 [hep-th/0606187] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.E. Kim, J.-H. Kim and B. Kyae, Superstring standard model from Z(12-I) orbifold compactification with and without exotics and effective R-parity, JHEP 06 (2007) 034 [hep-ph/0702278] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    O. Lebedev et al., The Heterotic Road to the MSSM with R parity, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691] [INSPIRE].ADSGoogle Scholar
  24. [24]
    O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z(6) orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    S. Nibbelink Groot, J. Held, F. Ruehle, M. Trapletti and P.K. Vaudrevange, Heterotic Z(6 − II) MSSM orbifolds in blowup, JHEP 03 (2009) 005 [arXiv:0901.3059] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    M. Blaszczyk et al., A Z2 × Z2 standard model, Phys. Lett. B 683 (2010) 340 [arXiv:0911.4905] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    M. Blaszczyk, S. Nibbelink Groot, F. Ruehle, M. Trapletti and P.K. Vaudrevange, Heterotic MSSM on a Resolved Orbifold, JHEP 09 (2010) 065 [arXiv:1007.0203] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Kappl et al., String-Derived MSSM Vacua with Residual R Symmetries, Nucl. Phys. B 847 (2011) 325 [arXiv:1012.4574] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    B. Assel, K. Christodoulides, A.E. Faraggi, C. Kounnas and J. Rizos, Exophobic Quasi-Realistic Heterotic String Vacua, Phys. Lett. B 683 (2010) 306 [arXiv:0910.3697] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    K. Christodoulides, A.E. Faraggi and J. Rizos, Top Quark Mass in Exophobic Pati-Salam Heterotic String Model, Phys. Lett. B 702 (2011) 81 [arXiv:1104.2264] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G. Cleaver et al., Investigation of Quasi-Realistic Heterotic String Models with Reduced Higgs Spectrum, Eur. Phys. J. C 71 (2011) 1842 [arXiv:1105.0447] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Maio and A. Schellekens, Permutation orbifolds of heterotic Gepner models, Nucl. Phys. B 848 (2011) 594 [arXiv:1102.5293] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    B. Gato-Rivera and A. Schellekens, Heterotic Weight Lifting, Nucl. Phys. B 828 (2010) 375 [arXiv:0910.1526] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    B. Gato-Rivera and A. Schellekens, Asymmetric Gepner Models II. Heterotic Weight Lifting, Nucl. Phys. B 846 (2011) 429 [arXiv:1009.1320] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two Hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Gray, Y.-H. He, A. Ilderton and A. Lukas, STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology, Comput. Phys. Commun. 180 (2009) 107 [arXiv:0801.1508] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  37. [37]
    L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring positive monad bundles and a new heterotic standard model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    Y.-H. He, S.-J. Lee and A. Lukas, Heterotic models from vector bundles on toric Calabi-Yau manifolds, JHEP 05 (2010) 071 [arXiv:0911.0865] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    L.B. Anderson, Y.-H. He and A. Lukas, Monad bundles in heterotic string compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    J. Gray, Y.-H. He, A. Ilderton and A. Lukas, A new method for finding vacua in string phenomenology, JHEP 07 (2007) 023 [hep-th/0703249] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    L.B. Anderson, Y.-H. He and A. Lukas, Heterotic compactification, an algorithmic approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    L.B. Anderson, J. Gray, D. Grayson, Y.-H. He and A. Lukas, Yukawa Couplings in Heterotic Compactification, Commun. Math. Phys. 297 (2010) 95 [arXiv:0904.2186] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  43. [43]
    J. Gray, A Simple Introduction to Grobner Basis Methods in String Phenomenology, Adv. High Energy Phys. 2011 (2011) 217035 [arXiv:0901.1662] [INSPIRE].Google Scholar
  44. [44]
    R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of Line Bundles: A Computational Algorithm, J. Math. Phys. 51 (2010) 103525 [arXiv:1003.5217] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    T. Rahn, Target Space Dualities of Heterotic Grand Unified Theories, arXiv:1111.0491 [INSPIRE].
  46. [46]
    The database of 400 heterotic line bundle standard models can be accessed at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html.
  47. [47]
    M. Dine, N. Seiberg and E. Witten, Fayet-Iliopoulos Terms in String Theory, Nucl. Phys. B 289 (1987) 589 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    A. Lukas and K. Stelle, Heterotic anomaly cancellation in five-dimensions, JHEP 01 (2000) 010 [hep-th/9911156] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP 06 (2005) 020 [hep-th/0504232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stability walls in heterotic theories, JHEP 09 (2009) 026 [arXiv:0905.1748] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Edge Of Supersymmetry: Stability Walls in Heterotic Theory, Phys. Lett. B 677 (2009) 190 [arXiv:0903.5088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    L.B. Anderson, J. Gray and B.A. Ovrut, Transitions in the Web of Heterotic Vacua, Fortsch. Phys. 59 (2011) 327 [arXiv:1012.3179] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  53. [53]
    E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    A. Lukas, B.A. Ovrut and D. Waldram, Nonstandard embedding and five-branes in heterotic M-theory, Phys. Rev. D 59 (1999) 106005 [hep-th/9808101] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing All Geometric Moduli in Heterotic Calabi-Yau Vacua, Phys. Rev. D 83 (2011) 106011 [arXiv:1102.0011] [INSPIRE].ADSGoogle Scholar
  56. [56]
    P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992), pg. 259.Google Scholar
  58. [58]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [INSPIRE].ADSGoogle Scholar
  60. [60]
    G. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Kobayashi, Mathematical Society of Japan Publications. Vol. 15: Differential geometry of complex vector bundles, Princeton University Press, Princeton U.S.A. (1987).Google Scholar
  62. [62]
    E.R. Sharpe, Kähler cone substructure, Adv. Theor. Math. Phys. 2 (1999) 1441 [hep-th/9810064] [INSPIRE].MathSciNetGoogle Scholar
  63. [63]
    L.B. Anderson, J. Gray and B. Ovrut, Yukawa textures from heterotic stability walls, JHEP 05 (2010) 086 [arXiv:1001.2317] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Kuriyama, H. Nakajima and T. Watari, Theoretical Framework for R-parity Violation, Phys. Rev. D 79 (2009) 075002 [arXiv:0802.2584] [INSPIRE].ADSGoogle Scholar
  65. [65]
    J. Li and S.-T. Yau, The existence of supersymmetric string theory with torsion, hep-th/0411136 [INSPIRE].
  66. [66]
    P. Berglund et al., On the instanton contributions to the masses and couplings of E 6 singlets, Nucl. Phys. B 454 (1995) 127 [hep-th/9505164] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the complex structure in heterotic Calabi-Yau vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah class and complex structure stabilization in heterotic Calabi-Yau compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    P. Candelas, A. Dale, C. Lütken and R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds, Nucl. Phys. B 298 (1988) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Gagnon and Q. Ho-Kim, An exhaustive list of complete intersection Calabi-Yau manifolds, Mod. Phys. Lett. A 9 (1994) 2235 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
  72. [72]
    V. Braun, On free quotients of complete intersection Calabi-Yau manifolds, JHEP 04 (2011) 005 [arXiv:1003.3235] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    L.B. Anderson, Heterotic and M-theory compactifications for string phenomenology, arXiv:0808.3621 [INSPIRE].
  74. [74]
    R. Friedman, Algebraic Surfaces and Holomorphic Vector Bundles, Springer-Verlag, Heidelberg Germany (1998).CrossRefMATHGoogle Scholar
  75. [75]
    R. Donagi, B.A. Ovrut, T. Pantev and R. Reinbacher, SU(4) instantons on Calabi-Yau threefolds with Z(2) × Z(2) fundamental group, JHEP 01 (2004) 022 [hep-th/0307273] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    R. Hartshorne, GTM 52: Algebraic Geometry, Springer Verlag, Heidelberg Germany (1977).CrossRefGoogle Scholar
  77. [77]
    P. Griffith and J. Harris, Principles of algebraic geometry, (1978).Google Scholar
  78. [78]
    T. Hubsch, Calabi-Yau manifolds: A Bestiary for physicists, first edition World Scientific, Singapore (1992), pg. 362 [second edition, World Scientific, Singapore (1994), pg. 374].Google Scholar
  79. [79]
    E. Dudas and E. Palti, On hypercharge flux and exotics in F-theory GUTs, JHEP 09 (2010) 013 [arXiv:1007.1297] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    J. Marsano, Hypercharge Flux, Exotics and Anomaly Cancellation in F-theory GUTs, Phys. Rev. Lett. 106 (2011) 081601 [arXiv:1011.2212] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M.J. Dolan, J. Marsano and S. Schäfer-Nameki, Unification and phenomenology of F-theory GUTs with U(1)PQ, JHEP 12 (2011) 032 [arXiv:1109.4958] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    Y. Nir and N. Seiberg, Should squarks be degenerate?, Phys. Lett. B 309 (1993) 337 [hep-ph/9304307] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Lara B. Anderson
    • 1
  • James Gray
    • 2
  • Andre Lukas
    • 3
  • Eran Palti
    • 4
  1. 1.Center for the Fundamental Laws of Nature, Jefferson LaboratoryHarvard UniversityCambridgeU.S.A.
  2. 2.Arnold-Sommerfeld-Center for Theoretical Physics, Department für PhysikLudwig-Maximilians-Universität MünchenMünchenGermany
  3. 3.Rudolf Peierls Centre for Theoretical PhysicsOxford UniversityOxfordU.K.
  4. 4.Centre de Physique Theorique, Ecole Polytechnique, CNRSPalaiseauFrance

Personalised recommendations