Advertisement

Measuring Higgs \( \mathcal{C}\mathcal{P} \) and couplings with hadronic event shapes

  • Christoph Englert
  • Michael Spannowsky
  • Michihisa Takeuchi
Article

Abstract

Experimental falsification or validation of the Standard Model of Particle Physics involves the measurement of the \( \mathcal{C}\mathcal{P} \) quantum number and couplings of the Higgs boson. Both Atlas and Cms have reported an SM Higgs-like excess around m H  = 125 GeV. In this mass range the \( \mathcal{C}\mathcal{P} \) properties of the Higgs boson can be extracted from an analysis of the azimuthal angle distribution of the two jets in pp → H jj events. This channel is also important to measure the couplings of the Higgs boson to electroweak gauge bosons and fermions, hereby establishing the exceptional role of the Higgs boson in the Standard Model. Instead of exploiting the jet angular correlation, we show that hadronic event shapes exhibit substantial discriminative power to separate a \( \mathcal{C}\mathcal{P} \) even from a \( \mathcal{C}\mathcal{P} \) odd Higgs. Some event shapes even show an increased sensitivity to the Higgs \( \mathcal{C}\mathcal{P} \) compared to the azimuthal angle correlation. Constraining the Higgs couplings via a separation of the weak boson fusion and the gluon fusion Higgs production modes can be achieved applying similar strategies.

Keywords

Higgs Physics Beyond Standard Model Standard Model 

References

  1. [1]
    F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].ADSGoogle Scholar
  3. [3]
    P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].ADSGoogle Scholar
  5. [5]
    ATLAS collaboration, G. Aad et al., Limits on the production of the Standard Model Higgs Boson in pp collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1728 [arXiv:1106.2748] [INSPIRE].ADSGoogle Scholar
  6. [6]
    CMS collaboration, S. Chatrchyan et al., Measurement of W + W Production and Search for the Higgs Boson in pp Collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 699 (2011) 25 [arXiv:1102.5429] [INSPIRE].ADSGoogle Scholar
  7. [7]
    ATLAS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 fb-1 of pp collisions at \( \sqrt {s} = 7 \) TeV at the LHC, ATLAS-CONF-2011-157 (2011).Google Scholar
  8. [8]
    CMS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 inverse femtobarns of pp collision data at \( \sqrt {s} = 7 \) TeV at the LHC, CMS-PAS-HIG-11-023 (2011).Google Scholar
  9. [9]
    ATLAS collaboration, G. Aad et al., Search for the Higgs boson in the \( H \to W{W^{\left( * \right)}} \to {l^{+} }\nu {l^{-} }\bar{\nu } \) decay channel in pp collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 111802 [arXiv:1112.2577] [INSPIRE].ADSGoogle Scholar
  10. [10]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb-1 of ATLAS data at \( \sqrt {s} = 7 \) TeV, ATLAS-CONF-2011-161 (2011).Google Scholar
  11. [11]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the decay channel \( H \to Z{Z^{\left( * \right)}} \to 4\ell \) with 4.8 fb −1 of pp collisions at \( \sqrt {s} = 7 \) TeV, ATLAS-CONF-2011-162 (2011).Google Scholar
  12. [12]
    ATLAS collaboration, Combination of Higgs Boson Searches with up to 4.9 fb-1 of pp Collisions Data Taken at a center-of-mass energy of 7 TeV with the ATLAS Experiment at the LHC, ATLAS-CONF-2011-163 (2011).Google Scholar
  13. [13]
    CMS collaboration, Search for a Higgs boson produced in the decay channel 4 l, PAS-HIG-11-025.Google Scholar
  14. [14]
    CMS collaboration, Search for Neutral Higgs Bosons Decaying to Tau Pairs in pp Collisions at \( \sqrt {s} = 7 \) TeV, PAS-HIG-11-029.Google Scholar
  15. [15]
    CMS collaboration, Search for a Higgs boson decaying into two photons in the CMS detector, PAS-HIG-11-030.Google Scholar
  16. [16]
    CMS collaboration, Search for Higgs Boson in VH Production with H to bb, PAS-HIG-11-031.Google Scholar
  17. [17]
    CMS collaboration, Combination of SM Higgs Searches, PAS-HIG-11-032.Google Scholar
  18. [18]
    ATLAS collaboration, An update to the combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC using up to 4.9 fb-1 of pp collision data at \( \sqrt {s} = 7 \) TeV, ATLAS-CONF-2012-019 (2012).Google Scholar
  19. [19]
    CMS, Combination of SM, SM4, FP Higgs boson searches, PAS-HIG-12-008.Google Scholar
  20. [20]
    LEP Working Group for Higgs boson searches, ALEPH collaboration, DELPHI collaboration, L3 collaboration, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  21. [21]
    TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF collaboration, D0 collaboration, Combined CDF and D0 Search for Standard Model Higgs Boson Production with up to 10.0 f b −1 of Data, arXiv:1203.3774 [INSPIRE].
  22. [22]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, arXiv:1202.3144 [INSPIRE].
  23. [23]
    A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.R. Espinosa, C. Grojean, M. Mühlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, J HEP 05 (2012) 097 arXiv:1202.3697 [INSPIRE].ADSGoogle Scholar
  25. [25]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.F. Gunion, Y. Jiang and S. Kraml, The Constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S.F. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs Benchmarks Near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].ADSGoogle Scholar
  28. [28]
    D.A. Vasquez, G. Bélanger, C. Boehm, J. Da Silva, P. Richardson, et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, arXiv:1203.3446 [INSPIRE].
  29. [29]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSGoogle Scholar
  30. [30]
    X.G. He, B. Ren and J. Tandean, Hints of Standard Model Higgs Boson at the LHC and Light Dark Matter Searches, Phys. Rev. D 85 (2012) 093019 [arXiv:1112.6364] [INSPIRE].ADSGoogle Scholar
  31. [31]
    F. Goertz, U. Haisch and M. Neubert, Bounds on Warped Extra Dimensions from a Standard Model-like Higgs Boson, Phys. Lett. B 713 (2012) 23 [arXiv:1112.5099] [INSPIRE].ADSGoogle Scholar
  32. [32]
    G. Guo, B. Ren and X.G. He, LHC Evidence Of A 126 GeV Higgs Boson From H → γγ With Three And Four Generations, arXiv:1112.3188 [INSPIRE].
  33. [33]
    C.F. Chang, K. Cheung, Y.C. Lin and T.C. Yuan, Mimicking the Standard Model Higgs Boson in UMSSM, arXiv:1202.0054 [INSPIRE].
  34. [34]
    B. Grzadkowski, J.F. Gunion and M. Toharia, Higgs-Radion interpretation of the LHC data?, Phys. Lett. B 712 (2012) 70 [arXiv:1202.5017] [INSPIRE].ADSGoogle Scholar
  35. [35]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, arXiv:1203.4254 [INSPIRE].
  36. [36]
    L.F. Landau, The moment of a 2-photon system, Dok. Akad. Nauk USSR 60 (1948) 207.Google Scholar
  37. [37]
    C.N. Yang, Selection Rules for the Dematerialization of a Particle Into Two Photons, Phys. Rev. 77 (1950) 242 [INSPIRE].ADSMATHGoogle Scholar
  38. [38]
    J. Ellis and D.S. Hwang, Does the ‘Higgs’ have Spin Zero?, arXiv:1202.6660 [INSPIRE].
  39. [39]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Spira, A. Djouadi, D. Graudenz and R.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSGoogle Scholar
  43. [43]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSGoogle Scholar
  44. [44]
    S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].ADSGoogle Scholar
  45. [45]
    N. Kauer, T. Plehn, D.L. Rainwater and D. Zeppenfeld, HW W as the discovery mode for a light Higgs boson, Phys. Lett. B 503 (2001) 113 [hep-ph/0012351] [INSPIRE].ADSGoogle Scholar
  46. [46]
    D.L. Rainwater, D. Zeppenfeld and K. Hagiwara, Searching for Hτ τ in weak boson fusion at the CERN LHC, Phys. Rev. D 59 (1998) 014037 [hep-ph/9808468] [INSPIRE].ADSGoogle Scholar
  47. [47]
    D. Zeppenfeld, R. Kinnunen, A. Nikitenko and E. Richter-Was, Measuring Higgs boson couplings at the CERN LHC, Phys. Rev. D 62 (2000) 013009 [hep-ph/0002036] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Dührssen, Prospects for the measurement of Higgs boson coupling parameters in the mass range from 110 - 190 GeV, ATL-PHYS-2003-030 (2003).Google Scholar
  49. [49]
    M. Dührssen, S. Heinemeyer, H. Logan, D. Rainwater, G. Weiglein and D. Zeppenfeld, Extracting Higgs boson couplings from CERN LHC data, Phys. Rev. D 70 (2004) 113009 [hep-ph/0406323] [INSPIRE].ADSGoogle Scholar
  50. [50]
    R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs Sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Rauch, Measuring the Higgs boson couplings, arXiv:1110.1196 [INSPIRE].
  52. [52]
    J. Bagger, V.D. Barger, K.M. Cheung, J.F. Gunion, T. Han, G.A. Ladinsky et al., CERN LHC analysis of the strongly interacting W W system: Gold plated modes, Phys. Rev. D 52 (1995) 3878 [hep-ph/9504426] [INSPIRE].ADSGoogle Scholar
  53. [53]
    C. Englert, B. Jäger, M. Worek and D. Zeppenfeld, Observing Strongly Interacting Vector Boson Systems at the CERN Large Hadron Collider, Phys. Rev. D 80 (2009) 035027 [arXiv:0810.4861] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Ballestrero, D. Buarque Franzosi, L. Oggero and E. Maina, Vector Boson scattering at the LHC: counting experiments for unitarized models in a full six fermion approach, JHEP 03 (2012) 031 [arXiv:1112.1171] [INSPIRE].ADSGoogle Scholar
  55. [55]
    P. Borel, R. Franceschini, R. Rattazzi and A. Wulzer, Probing the Scattering of Equivalent Electroweak Bosons, arXiv:1202.1904 [INSPIRE].
  56. [56]
    K. Doroba, J. Kalinowski, J. Kuczmarski, S. Pokorski, J. Rosiek et al., The W L W L scattering at the LHC: improving the selection criteria, arXiv:1201.2768 [INSPIRE].
  57. [57]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  58. [58]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Kinematical limits on Higgs boson production via gluon fusion in association with jets, Phys. Rev. D 67 (2003) 073003 [hep-ph/0301013] [INSPIRE].ADSGoogle Scholar
  59. [59]
    F. Campanario, M. Kubocz and D. Zeppenfeld, Gluon-fusion contributions to Φ + 2 Jet production, Phys. Rev. D 84 (2011) 095025 [arXiv:1011.3819] [INSPIRE].ADSGoogle Scholar
  60. [60]
    S.Y. Choi, D.J Miller, M. Mühlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].ADSGoogle Scholar
  61. [61]
    C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in \( H \to ZZ \to 1_1^{+} 1_1^{-} 1_2^{+} 1_2^{-} \) at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay HW W/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].ADSGoogle Scholar
  63. [63]
    Q.H. Cao, C.B. Jackson, W.Y. Keung, I. Low and J. Shu, The Higgs Mechanism and Loop-induced Decays of a Scalar into Two Z Bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].ADSGoogle Scholar
  64. [64]
    N. Cabibbo and A. Maksymowicz, Angular Correlations in K e4 Decays and Determination of Low-Energy ππ Phase Shifts, Phys. Rev. 137 (1965) B438 [Erratum ibid. 168 (1968) 1926] [INSPIRE].ADSGoogle Scholar
  65. [65]
    T.L. Trueman, \( \varphi \varphi \) decay as a parity and signature test, Phys. Rev. D 18 (1978) 3423 [INSPIRE].ADSGoogle Scholar
  66. [66]
    J.R. Dell’Aquila and C.A Nelson, P or CP determination by sequential decays: V 1 V 2 modes with decays into \( {\bar{I}_A}{I_B} \) and/or \( {\bar{q}_A}{q_B} \), Phys. Rev. D 33 (1986) 80 [INSPIRE].ADSGoogle Scholar
  67. [67]
    J.C. Collins and D.E Soper, Angular Distribution of Dileptons in High-Energy Hadron Collisions, Phys. Rev. D 16 (1977) 2219 [INSPIRE].ADSGoogle Scholar
  68. [68]
    T. Plehn, D.L. Rainwater and D. Zeppenfeld, A Method for identifying Hτ τe ± μ p T at the CERN LHC, Phys. Rev. D 61 (2000) 093005 [hep-ph/9911385] [INSPIRE].ADSGoogle Scholar
  69. [69]
    T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].ADSGoogle Scholar
  70. [70]
    T. Figy, C. Oleari and D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson production via weak boson fusion, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109] [INSPIRE].ADSGoogle Scholar
  71. [71]
    T. Figy and D. Zeppenfeld, QCD corrections to jet correlations in weak boson fusion, Phys. Lett. B 591 (2004) 297 [hep-ph/0403297] [INSPIRE].ADSGoogle Scholar
  72. [72]
    V. Del Duca, G. Klämke, D. Zeppenfeld, M.L. Mangano, M. Moretti, F. Piccinini et al., Monte Carlo studies of the jet activity in Higgs + 2 jet events, JHEP 10 (2006) 016 [hep-ph/0608158] [INSPIRE].ADSGoogle Scholar
  73. [73]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-Leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE].ADSGoogle Scholar
  74. [74]
    P. Nason, S. Dawson and R.K. Ellis, The One Particle Inclusive Differential Cross-Section for Heavy Quark Production in Hadronic Collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [INSPIRE].ADSGoogle Scholar
  75. [75]
    W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].ADSGoogle Scholar
  76. [76]
    M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].ADSGoogle Scholar
  77. [77]
    S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Top quark distributions in hadronic collisions, Phys. Lett. B 351 (1995) 555 [hep-ph/9503213] [INSPIRE].ADSGoogle Scholar
  78. [78]
    S. Moch and P. Uwer, Heavy-quark pair production at two loops in QCD, Nucl. Phys. Proc. Suppl. 183 (2008) 75 [arXiv:0807.2794] [INSPIRE].ADSGoogle Scholar
  79. [79]
    ATLAS collaboration, Measurement of the b-tag Efficiency in a Sample of Jets Containing Muons with 5 fb-1 of Data from the ATLAS Detector, ATLAS-CONF-2012-043 (2012).Google Scholar
  80. [80]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W +2 jet and Z +2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].ADSGoogle Scholar
  81. [81]
    C. Oleari and D. Zeppenfeld, QCD corrections to electroweak ℓν jj and ℓ + jj production, Phys. Rev. D 69 (2004) 093004 [hep-ph/0310156] [INSPIRE].ADSGoogle Scholar
  82. [82]
    J.R. Andersen, K. Arnold and D. Zeppenfeld, Azimuthal Angle Correlations for Higgs Boson plus Multi-Jet Events, JHEP 06 (2010) 091 [arXiv:1001.3822] [INSPIRE].ADSGoogle Scholar
  83. [83]
    J.R. Andersen and C.D. White, A New Framework for Multijet Predictions and its application to Higgs Boson production at the LHC, Phys. Rev. D 78 (2008) 051501 [arXiv:0802.2858] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J.R. Andersen, V. Del Duca and C.D. White, Higgs Boson Production in Association with Multiple Hard Jets, JHEP 02 (2009) 015 [arXiv:0808.3696] [INSPIRE].ADSGoogle Scholar
  85. [85]
    J.R. Andersen and J.M. Smillie, Constructing All-Order Corrections to Multi-Jet Rates, JHEP 01 (2010) 039 [arXiv:0908.2786] [INSPIRE].ADSGoogle Scholar
  86. [86]
    J.R. Andersen and J.M. Smillie, The Factorisation of the t-channel Pole in quark-gluon Scattering, Phys. Rev. D 81 (2010) 114021 [arXiv:0910.5113] [INSPIRE].ADSGoogle Scholar
  87. [87]
    G. Klämke and D. Zeppenfeld, Higgs plus two jet production via gluon fusion as a signal at the CERN LHC, JHEP 04 (2007) 052 [hep-ph/0703202] [INSPIRE].ADSGoogle Scholar
  88. [88]
    K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].ADSGoogle Scholar
  89. [89]
    CMS collaboration, S. Chatrchyan et al., Search for neutral Higgs bosons decaying to tau pairs in pp collisions at \( \sqrt {s} = 7 \) TeV, arXiv:1202.4083 [INSPIRE].
  90. [90]
    A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].ADSGoogle Scholar
  91. [91]
    M. Dasgupta and G.P. Salam, Resummed event-shape variables in DIS, JHEP 08 (2002) 032 [hep-ph/0208073] [INSPIRE].ADSGoogle Scholar
  92. [92]
    A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [INSPIRE].ADSGoogle Scholar
  93. [93]
    A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].ADSGoogle Scholar
  94. [94]
    ALEPH collaboration, A. Heister et al., Studies of QCD at e + e centre-of-mass energies between 91-GeV and 209-GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].ADSGoogle Scholar
  95. [95]
    DELPHI collaboration, J. Abdallah et al., The Measurement of α s from event shapes with the DELPHI detector at the highest LEP energies, Eur. Phys. J. C 37 (2004) 1 [hep-ex/0406011] [INSPIRE].ADSGoogle Scholar
  96. [96]
    L3 collaboration, P. Achard et al., Studies of hadronic event structure in e + e annihilation from 30-GeV to 209-GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].ADSGoogle Scholar
  97. [97]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution in electron-positron annihilation, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].ADSGoogle Scholar
  98. [98]
    T. Becher and M.D. Schwartz, A Precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].ADSGoogle Scholar
  99. [99]
    S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, The Principal axis of jets. An Attempt to analyze high-energy collisions as two-body processes, Phys. Lett. 12 (1964) 57 [INSPIRE].ADSGoogle Scholar
  100. [100]
    E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].ADSGoogle Scholar
  101. [101]
    CMS collaboration, V. Khachatryan et al., First Measurement of Hadronic Event Shapes in pp Collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 699 (2011) 48 [arXiv:1102.0068] [INSPIRE].ADSGoogle Scholar
  102. [102]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K -clustering algorithms for hadron-hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSGoogle Scholar
  103. [103]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].ADSGoogle Scholar
  104. [104]
    S. Catani, G. Turnock and B.R. Webber, Jet broadening measures in e + e annihilation, Phys. Lett. B 295 (1992) 269 [INSPIRE].ADSGoogle Scholar
  105. [105]
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].ADSGoogle Scholar
  106. [106]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].ADSGoogle Scholar
  107. [107]
    J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSGoogle Scholar
  108. [108]
    R.P. Kauffman, S.V. Desai and D. Risal, Production of a Higgs boson plus two jets in hadronic collisions, Phys. Rev. D 55 (1997) 4005 [Erratum ibid. D 58 (1998) 119901] [hep-ph/9610541] [INSPIRE].ADSGoogle Scholar
  109. [109]
    R.P. Kauffman and S.V. Desai, Production of a Higgs pseudoscalar plus two jets in hadronic collisions, Phys. Rev. D 59 (1999) 057504 [hep-ph/9808286] [INSPIRE].ADSGoogle Scholar
  110. [110]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSGoogle Scholar
  111. [111]
    J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].Google Scholar
  112. [112]
    R.K. Ellis, An update on the next-to-leading order Monte Carlo MCFM, Nucl. Phys. Proc. Suppl. 160 (2006) 170 [INSPIRE].ADSGoogle Scholar
  113. [113]
    K. Arnold, M. Bähr, G. Bozzi, F. Campanario, C. Englert, T. Figy et al., VBFNLO: A Parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE].ADSGoogle Scholar
  114. [114]
    K. Arnold, J. Bellm, G. Bozzi, M. Brieg, F. Campanario, C. Englert et al., VBFNLO: A parton level Monte Carlo for processes with electroweak bosons — Manual for Version 2.5.0, arXiv:1107.4038 [INSPIRE].
  115. [115]
    J.R. Andersen, T. Binoth, G. Heinrich and J.M. Smillie, Loop induced interference effects in Higgs Boson plus two jet production at the LHC, JHEP 02 (2008) 057 [arXiv:0709.3513] [INSPIRE].ADSGoogle Scholar
  116. [116]
    A. Bredenstein, K. Hagiwara and B. Jäger, Mixed QCD-electroweak contributions to Higgs-plus-dijet production at the LHC, Phys. Rev. D 77 (2008) 073004 [arXiv:0801.4231] [INSPIRE].ADSGoogle Scholar
  117. [117]
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].ADSGoogle Scholar
  118. [118]
    C. Englert, C. Hackstein and M. Spannowsky, Measuring spin and CP from semi-hadronic ZZ decays using jet substructure, Phys. Rev. D 82 (2010) 114024 [arXiv:1010.0676] [INSPIRE].ADSGoogle Scholar
  119. [119]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSGoogle Scholar
  120. [120]
    T. Gleisberg, S. Hoeche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].ADSGoogle Scholar
  121. [121]
    S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSGoogle Scholar
  122. [122]
    T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].ADSGoogle Scholar
  123. [123]
    S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].ADSGoogle Scholar
  124. [124]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSGoogle Scholar
  125. [125]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSGoogle Scholar
  126. [126]
    M. Heldmann, D. Cavalli, An improved tau-identification for the ATLAS experiment, ATL-PHYS-PUB-2006-008, ATL-COM-PHYS-2006-010Google Scholar
  127. [127]
    CMS collaboration, Tau identification in CMS, PAS-TAU-11-001.Google Scholar
  128. [128]
    U. Baur and E.W.N. Glover, Tagging the Higgs boson in ppW + W jj processes, Phys. Lett. B 252 (1990) 683 [INSPIRE].ADSGoogle Scholar
  129. [129]
    V.D. Barger, K.M. Cheung, T. Han and D. Zeppenfeld, Single forward jet tagging and central jet vetoing to identify the leptonic W W decay mode of a heavy Higgs boson, Phys. Rev. D 44 (1991) 2701 [Erratum ibid. D 48 (1993) 5444] [INSPIRE].ADSGoogle Scholar
  130. [130]
    D.L. Rainwater, R. Szalapski and D. Zeppenfeld, Probing color singlet exchange in Z + 2-jet events at the CERN LHC, Phys. Rev. D 54 (1996) 6680 [hep-ph/9605444] [INSPIRE].ADSGoogle Scholar
  131. [131]
    E. Gerwick, T. Plehn and S. Schumann, Understanding Jet Scaling and Jet Vetos in Higgs Searches, Phys. Rev. Lett. 108 (2012) 032003 [arXiv:1108.3335] [INSPIRE].ADSGoogle Scholar
  132. [132]
    B.E. Cox, J.R. Forshaw and A.D. Pilkington, Extracting Higgs boson couplings using a jet veto, Phys. Lett. B 696 (2011) 87 [arXiv:1006.0986] [INSPIRE].ADSGoogle Scholar
  133. [133]
    S. Ask, J.H. Collins, J.R. Forshaw, K. Joshi and A.D. Pilkington, Identifying the colour of TeV-scale resonances, JHEP 01 (2012) 018 [arXiv:1108.2396] [INSPIRE].ADSGoogle Scholar
  134. [134]
    V. Hankele, G. Klämke, D. Zeppenfeld and T. Figy, Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC, Phys. Rev. D 74 (2006) 095001 [hep-ph/0609075] [INSPIRE].ADSGoogle Scholar
  135. [135]
    C. Englert, T. Plehn, P. Schichtel and S. Schumann, Establishing Jet Scaling Patterns with a Photon, JHEP 02 (2012) 030 [arXiv:1108.5473] [INSPIRE].ADSGoogle Scholar
  136. [136]
    T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].ADSGoogle Scholar
  137. [137]
    T. Junk, CDF Note 8128 [cdf/doc/statistics/public/8128].Google Scholar
  138. [138]
    T. Junk, CDF Note 7904 [cdf/doc/statistics/public/7904].Google Scholar
  139. [139]
    H. Hu and J. Nielsen, Analytic Confidence Level Calculations using the Likelihood Ratio and Fourier Transform, physics/9906010.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Christoph Englert
    • 1
  • Michael Spannowsky
    • 1
  • Michihisa Takeuchi
    • 2
  1. 1.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamUnited Kingdom
  2. 2.Institute for Theoretical PhysicsHeidelberg UniversityHeidelbergGermany

Personalised recommendations