Wilsonian renormalisation and the exact cut-off scale from holographic duality



We propose a method for determining the exact correspondence between the Wilsonian cut-off scale on the boundary and its holographically dual bulk theory. We systematically construct the multi-trace Wilsonian effective action from holographic renormalisation and evolve it by integrating out the asymptotically Anti-de Sitter bulk geometry with scalar probes. The Wilsonian nature of the effective action is shown by proving that it must be either double-trace, closing in on itself under successive integrations, or have an infinite series of multi-trace terms. Focusing on composite scalar operator renormalisation, we relate the Callan-Symanzik equation, the flow of the scalar anomalous dimension and the multi-trace beta functions to their dual RG flows in the bulk. Establishing physical renormalisation conditions on the behaviour of the large-N anomalous dimension then enables us to extract the energy scales. Examples of pure AdS, GPPZ flow, black brane in AdS, M2 and M5 branes are studied before we generalise our results to arbitrary numbers of mass and thermal deformations of an ultra-violet CFT. Relations between the undeformed Wilsonian cut-off, deformation scales and the deformed Wilsonian cut-off are discussed, as is phenomenology of each considered background. We see how a mass gap, the emergent infra-red CFT scaling, etc. arise in different effective theories. We also argue that these results can have alternative interpretations through the flow of the conformal anomaly orthe Ricci scalar curvature of boundary branes. They show consistency with the c-theorem.


Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) Renormalization Group 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1133 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114 [INSPIRE].
  5. [5]
    A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J. Distler and F. Zamora, Nonsupersymmetric conformal field theories from stable Anti-de Sitter spaces, Adv. Theor. Math. Phys. 2 (1999) 1405 [hep-th/9810206] [INSPIRE].MathSciNetGoogle Scholar
  9. [9]
    V. Balasubramanian and P. Kraus, Space-time and the holographic renormalization group, Phys. Rev. Lett. 83 (1999) 3605 [hep-th/9903190] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  10. [10]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of Anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].MathSciNetMATHGoogle Scholar
  13. [13]
    J. de Boer, The holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    K. Wilson and J.B. Kogut, The renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F.J. Wegner and A. Houghton, Renormalization group equation for critical phenomena, Phys. Rev. A 8 (1973) 401 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Wilson, The renormalization group and critical phenomena, Rev. Mod. Phys. 55 (1983) 583 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Polchinski, Renormalization and effective lagrangians, Nucl. Phys. B 231 (1984) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Polonyi, Lectures on the functional renormalization group method, Central Eur. J. Phys. 1 (2003) 1 [hep-th/0110026] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    S.-J. Sin and Y. Zhou, Holographic Wilsonian RG flow and sliding membrane paradigm, JHEP 05 (2011) 030 [arXiv:1102.4477] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
  23. [23]
    J. Fan, Effective AdS/renormalized CFT, JHEP 09 (2011) 136 [arXiv:1105.0678] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Akhmedov, I. Gahramanov and E. Musaev, Hints on integrability in the Wilsonian/holographic renormalization group, JETP Lett. 93 (2011) 545 [arXiv:1006.1970] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D. Radicevic, Connecting the holographic and Wilsonian renormalization groups, JHEP 12 (2011) 023 [arXiv:1105.5825] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    D. Elander, H. Isono and G. Mandal, Holographic Wilsonian flows and emergent fermions in extremal charged black holes, JHEP 11 (2011) 155 [arXiv:1109.3366] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.N. Laia and D. Tong, Flowing between fermionic fixed points, JHEP 11 (2011) 131 [arXiv:1108.2216] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    S.-S. Lee, Holographic description of quantum field theory, Nucl. Phys. B 832 (2010) 567 [arXiv:0912.5223] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.-S. Lee, Holographic description of large-N gauge theory, Nucl. Phys. B 851 (2011) 143 [arXiv:1011.1474] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M.F. Paulos, Holographic phase space: c-functions and black holes as renormalization group flows, JHEP 05 (2011) 043 [arXiv:1101.5993] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Kuperstein and A. Mukhopadhyay, The unconditional RG flow of the relativistic holographic fluid, JHEP 11 (2011) 130 [arXiv:1105.4530] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  38. [38]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    I. Papadimitriou, Multi-trace deformations in AdS/CFT: exploring the vacuum structure of the deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    L. Vecchi, Multitrace deformations, Gamow states and stability of AdS/CFT, JHEP 04 (2011) 056 [arXiv:1005.4921] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    E.T. Akhmedov, Notes on multitrace operators and holographic renormalization group, hep-th/0202055 [INSPIRE].
  42. [42]
    W. Mueck, An improved correspondence formula for AdS/CFT with multitrace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P. Minces, Multitrace operators and the generalized AdS/CFT prescription, Phys. Rev. D 68 (2003) 024027 [hep-th/0201172] [INSPIRE].ADSGoogle Scholar
  44. [44]
    T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    P. Mansfield and D. Nolland, One loop conformal anomalies from AdS/CFT in the Schrödinger representation, JHEP 07 (1999) 028 [hep-th/9906054] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS Dirichlet problem: fluid/gravity on cut-off surfaces, JHEP 12 (2011) 090 [arXiv:1106.2577] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [INSPIRE].
  49. [49]
    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].ADSGoogle Scholar
  51. [51]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    C. Herzog and D. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    C. Fefferman and C. Robin Graham, Conformal invariants, in Elie Cartan et les Mathématiques d’aujourd’hui Astérisque (1985) 95.Google Scholar
  54. [54]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 super Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    M. Porrati and A. Starinets, On the canonical c function in 4D field theories possessing supergravity duals, Phys. Lett. B 498 (2001) 285 [hep-th/0009227] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    M. Porrati and A. Starinets, Holographic duals of 4D field theories, hep-th/0009198 [INSPIRE].
  57. [57]
    E. Pomoni and L. Rastelli, Large-N field theory and AdS tachyons, JHEP 04 (2009) 020 [arXiv:0805.2261] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    L. Vecchi, The conformal window of deformed CFT’s in the planar limit, Phys. Rev. D 82 (2010) 045013 [arXiv:1004.2063] [INSPIRE].ADSGoogle Scholar
  59. [59]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  60. [60]
    C.G. Callan Jr., S.R. Coleman and R. Jackiw, A new improved energy-momentum tensor, Annals Phys. 59 (1970) 42 [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  61. [61]
    K. Higashijima and E. Itou, Unitarity bound of the wave function renormalization constant, Prog. Theor. Phys. 110 (2003) 107 [hep-th/0304047] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  62. [62]
    M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, U.S.A. (1995).Google Scholar
  63. [63]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  64. [64]
    H. Lü, J.-w. Mei, C. Pope and J.F. Vazquez-Poritz, Extremal static AdS black hole/CFT correspondence in gauged supergravities, Phys. Lett. B 673 (2009) 77 [arXiv:0901.1677] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Carlip, Black hole entropy from conformal field theory in any dimension, Phys. Rev. Lett. 82 (1999) 2828 [hep-th/9812013] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  66. [66]
    S.N. Solodukhin, Conformal description of horizon’s states, Phys. Lett. B 454 (1999) 213 [hep-th/9812056] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetMATHGoogle Scholar
  68. [68]
    A. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].
  69. [69]
    J.L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUK

Personalised recommendations