Advertisement

Three spin spiky strings in β-deformed background

  • Kamal L. Panigrahi
  • Pabitra M. Pradhan
  • Pratap K. Swain
Article

Abstract

We study rigidly rotating strings in β-deformed AdS 5 × S 5 background with one spin along AdS5 and two angular momenta along S 5. We find the spiky string solutions and present the dispersion relation among various charges in this background. We further generalize the result to the case of four angular momenta along \(Ad{S_5} \times S_\gamma^5\).

Keywords

AdS-CFT Correspondence Bosonic Strings 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113] [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    A.A. Tseytlin, Spinning strings and AdS/CFT duality, in From fields to strings, vol. 2, M. Shifman et al., World Scientific (2005), hep-th/0311139 [INSPIRE].
  4. [4]
    H. Dimov and R. Rashkov, Generalized pulsating strings, JHEP 05 (2004) 068 [hep-th/0404012] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M. Smedback, Pulsating strings on AdS 5 × S 5, JHEP 07 (2004) 004 [hep-th/0405102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    N. Beisert, The dilatation operator of N = 4 super Yang-Mills theory and integrability, Phys. Rept. 405 (2005) 1 [hep-th/0407277] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A.A. Tseytlin, Semiclassical strings and AdS/CFT, hep-th/0409296 [INSPIRE].
  8. [8]
    J. Plefka, Spinning strings and integrable spin chains in the AdS/CFT correspondence, Living Rev. Rel. 8 (2005) 9 [hep-th/0507136] [INSPIRE].Google Scholar
  9. [9]
    D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095 [hep-th/0604135] [INSPIRE].MathSciNetGoogle Scholar
  10. [10]
    M. Kruczenski, Spiky strings and single trace operators in gauge theories, JHEP 08 (2005) 014 [hep-th/0410226] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    R. Ishizeki and M. Kruczenski, Single spike solutions for strings on S 2 and S 3, Phys. Rev. D 76 (2007) 126006 [arXiv:0705.2429] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    N. Bobev, H. Dimov and R. Rashkov, Semiclassical strings in Lunin-Maldacena background, hep-th/0506063 [INSPIRE].
  13. [13]
    S. Ryang, Rotating strings with two unequal spins in Lunin-Maldacena background, JHEP 11 (2005) 006 [hep-th/0509195] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    N. Bobev and R. Rashkov, Multispin giant magnons, Phys. Rev. D 74 (2006) 046011 [hep-th/0607018] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Kruczenski, J. Russo and A.A. Tseytlin, Spiky strings and giant magnons on S 5, JHEP 10 (2006) 002 [hep-th/0607044] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J. Kluson, R.R. Nayak and K.L. Panigrahi, Giant magnon in NS5-brane background, JHEP 04 (2007) 099 [hep-th/0703244] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    H. Dimov and R. Rashkov, On the anatomy of multi-spin magnon and single spike string solutions, Nucl. Phys. B 799 (2008) 255 [arXiv:0709.4231] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    B.-H. Lee, R.R. Nayak, K.L. Panigrahi and C. Park, On the giant magnon and spike solutions for strings on AdS 3 × S 3, JHEP 06 (2008) 065 [arXiv:0804.2923] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    J.R. David and B. Sahoo, Giant magnons in the D1-D5 system, JHEP 07 (2008) 033 [arXiv:0804.3267] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    G. Grignani, T. Harmark and M. Orselli, The SU(2) × SU(2) sector in the string dual of N = 6 superconformal Chern-Simons theory, Nucl. Phys. B 810 (2009) 115 [arXiv:0806.4959] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    B.-H. Lee, K.L. Panigrahi and C. Park, Spiky strings on AdS 4 × CP 3, JHEP 11 (2008) 066 [arXiv:0807.2559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    S. Ryang, Giant magnon and spike solutions with two spins in AdS 4 × CP 3, JHEP 11 (2008) 084 [arXiv:0809.5106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S. Benvenuti and E. Tonni, Giant magnons and spiky strings on the conifold, JHEP 02 (2009) 041 [arXiv:0811.0145] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M.C. Abbott and I. Aniceto, Giant magnons in AdS 4 × CP 3 : embeddings, charges and a hamiltonian, JHEP 04 (2009) 136 [arXiv:0811.2423] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Suzuki, Giant magnons on CP 3 by dressing method, JHEP 05 (2009) 079 [arXiv:0902.3368] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D. Arnaudov, H. Dimov and R. Rashkov, On the pulsating strings in AdS 5 × T 1,1, J. Phys. A 44 (2011) 495401 [arXiv:1006.1539] [INSPIRE].MathSciNetGoogle Scholar
  27. [27]
    S. Biswas and K.L. Panigrahi, Spiky strings on N S5-branes, Phys. Lett. B 701 (2011) 481 [arXiv:1103.6153] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    R. Roiban, On spin chains and field theories, JHEP 09 (2004) 023 [hep-th/0312218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D. Berenstein and S.A. Cherkis, Deformations of N = 4 SYM and integrable spin chain models, Nucl. Phys. B 702 (2004) 49 [hep-th/0405215] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for superconformal deformations of N = 4 super Yang-Mills theory, JHEP 07 (2005) 045 [hep-th/0503192] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    C.-S. Chu, G. Georgiou and V.V. Khoze, Magnons, classical strings and β-deformations, JHEP 11 (2006) 093 [hep-th/0606220] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    N. Bobev and R. Rashkov, Spiky strings, giant magnons and β-deformations, Phys. Rev. D 76 (2007) 046008 [arXiv:0706.0442] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    S. Giardino and H.L. Carrion, Classical strings in AdS 4 × ℂℙ3 with three angular momenta, JHEP 08 (2011) 057 [arXiv:1106.5684] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    K.L. Panigrahi, P.M. Pradhan and P.K. Swain, Rotating strings in AdS 4 × CP 3 with B NS holonomy, JHEP 01 (2012) 113 [arXiv:1109.2458] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S. Giardino, Divergent energy strings in AdS 5 × S 5 with three angular momenta, JHEP 12 (2011) 022 [arXiv:1110.3682] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    S. Ryang, Three-spin giant magnons in AdS 5 × S 5, JHEP 12 (2006) 043 [hep-th/0610037] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069 [hep-th/0503201] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    D.V. Bykov and S. Frolov, Giant magnons in TsT-transformed AdS 5 × S 5, JHEP 07 (2008) 071 [arXiv:0805.1070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    T. McLoughlin and I. Swanson, Integrable twists in AdS/CFT, JHEP 08 (2006) 084 [hep-th/0605018] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Kamal L. Panigrahi
    • 1
  • Pabitra M. Pradhan
    • 1
  • Pratap K. Swain
    • 1
  1. 1.Department of Phyisics and MeteorologyIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations