Advertisement

On asymptotic darkness in Hořava-Lifshitz gravity

  • Emilio Elizalde
  • Pedro J. Silva
Article

Abstract

Hořava-Lifshitz gravity is shown to exhibit a peculiar behavior, when scattering amplitudes are considered. At low energies it seems to classicalize i.e. the effective size of the interaction grows as a function of the s-parameter, with BHs forming part of the spectrum; but when the probing energy is increased such that higher order operators become important, this behavior changes and the classicalon recedes to a new configuration where ordinary quantum regimes take over. Eventually, the theory behaves as a usual field theory that allows probing arbitrarily small distances. In particular, the classical potential created by a point-like source is finite everywhere exhibiting a Vainshtein alike screening behavior. The transition from one behavior to the other is carefully described in a particular case.

Keywords

Cosmology of Theories beyond the SM Models of Quantum Gravity 

References

  1. [1]
    P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].ADSGoogle Scholar
  2. [2]
    T.P. Sotiriou, M. Visser and S. Weinfurtner, Quantum gravity without Lorentz invariance, JHEP 10 (2009) 033 [arXiv:0905.2798] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    D. Blas, O. Pujolàs and S. Sibiryakov, Consistent extension of Hořava gravity, Phys. Rev. Lett. 104 (2010) 181302 [arXiv:0909.3525] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S. Carloni, E. Elizalde and P.J. Silva, Matter couplings in Hořava-Lifshitz and their cosmological applications, Class. Quant. Grav. 28 (2011) 195002 [arXiv:1009.5319] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    T. Jacobson, Extended Hořava gravity and Einstein-aether theory, Phys. Rev. D 81 (2010) 101502 [Erratum ibid. D 82 (2010) 129901] [arXiv:1001.4823] [INSPIRE].
  6. [6]
    T. Jacobson, Einstein-aether gravity: a status report, PoS(QG-PH)020 [arXiv:0801.1547] [INSPIRE].
  7. [7]
    E. Barausse, T. Jacobson and T.P. Sotiriou, Black holes in Einstein-aether and Hořava-Lifshitz gravity, Phys. Rev. D 83 (2011) 124043 [arXiv:1104.2889] [INSPIRE].ADSGoogle Scholar
  8. [8]
    T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  9. [9]
    E. Elizalde and P.J. Silva, F(R) gravity equation of state, Phys. Rev. D 78 (2008) 061501 [arXiv:0804.3721] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    P.J. Silva, Rational foundation of GR in terms of statistical mechanic in the AdS/CFT framework, JHEP 11 (2005) 012 [hep-th/0508081] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Jacobson and A.C. Wall, Black hole thermodynamics and Lorentz symmetry, Found. Phys. 40 (2010) 1076 [arXiv:0804.2720] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  12. [12]
    D. Capasso and A.P. Polychronakos, Particle kinematics in Hořava-Lifshitz gravity, JHEP 02 (2010) 068 [arXiv:0909.5405] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    T. Suyama, Notes on matter in Hořava-Lifshitz gravity, JHEP 01 (2010) 093 [arXiv:0909.4833] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S.K. Rama, Particle motion with Hořava-Lifshitz type dispersion relations, arXiv:0910.0411 [INSPIRE].
  15. [15]
    S. Corley and T. Jacobson, Hawking spectrum and high frequency dispersion, Phys. Rev. D 54 (1996) 1568 [hep-th/9601073] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    J. Macher and R. Parentani, Black/white hole radiation from dispersive theories, Phys. Rev. D 79 (2009) 124008 [arXiv:0903.2224] [INSPIRE].ADSGoogle Scholar
  17. [17]
    G. Dvali and C. Gomez, Self-completeness of Einstein gravity, arXiv:1005.3497 [INSPIRE].
  18. [18]
    G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-completion by classicalization, JHEP 08 (2011) 108 [arXiv:1010.1415] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Dvali, Classicalize or not to classicalize?, arXiv:1101.2661 [INSPIRE].
  20. [20]
    A. Nicolis, R. Rattazzi and E. Trincherini, The galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    D. Blas and S. Sibiryakov, Hořava gravity versus thermodynamics: the black hole case, Phys. Rev. D 84 (2011) 124043 [arXiv:1110.2195] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Consejo Superior de Investigaciones Científicas, ICE/CSIC and IEECBarcelonaSpain
  2. 2.Departament de Física and IFAE, Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations