Advertisement

Constraints on universal extra dimension models with gravity mediated decays from ATLAS diphoton search

  • Kirtiman Ghosh
  • Katri Huitu
Article

Abstract

We discuss the collider phenomenology of Universal Extra Dimension models with gravity mediated decays. We concentrate on diphoton associated with large missing transverse energy signature. At the collider, level-1 Kaluza-Klein (KK) particles are produced in pairs due to the conservation of KK-parity. Subsequently, KK-particles decay via cascades involving lighter KK-particles until reaching the lightest KK-particle (LKP). Finally, gravity induced decay of the LKP into photons gives rise to the diphoton signature. The search for diphoton events with large missing transverse energy was recently communicated by the ATLAS collaboration for 7 TeV center-of-mass energy and 3.1 inverse femtobarn integrated luminosity of the Large Hadron Collider. Above the Standard Model background prediction, no excess of such events was reported. We translate the absence of any excess of the diphoton events to constrain the model parameters, namely, the radius of compactification (R) and the fundamental Planck mass (M D ).

Keywords

Phenomenology of Large extra dimensions Phenomenology of Field Theories in Higher Dimensions 

References

  1. [1]
    I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  5. [5]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].ADSGoogle Scholar
  7. [7]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC, Phys. Rev. D 66 (2002) 056006 [hep-ph/0205314] [INSPIRE].ADSGoogle Scholar
  8. [8]
    B.A. Dobrescu and E. Ponton, Chiral compactification on a square, JHEP 03 (2004) 071 [hep-th/0401032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    G. Burdman, B.A. Dobrescu and E. Ponton, Six-dimensional gauge theory on the chiral square, JHEP 02 (2006) 033 [hep-ph/0506334] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    E. Ponton and L. Wang, Radiative effects on the chiral square, JHEP 11 (2006) 018 [hep-ph/0512304] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    T.G. Rizzo, Probes of universal extra dimensions at colliders, Phys. Rev. D 64 (2001) 095010 [hep-ph/0106336] [INSPIRE].ADSGoogle Scholar
  12. [12]
    H.-C. Cheng, Universal extra dimensions at the e e colliders, Int. J. Mod. Phys. A 18 (2003) 2779 [hep-ph/0206035] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Muck, A. Pilaftsis and R. Ruckl, Probing minimal 5 − D extensions of the standard model: From LEP to an e + e linear collider, Nucl. Phys. B 687 (2004) 55 [hep-ph/0312186] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Battaglia, A. Datta, A. De Roeck, K. Kong and K.T. Matchev, Contrasting supersymmetry and universal extra dimensions at the CLIC multi-TeV e + e collider, JHEP 07 (2005) 033 [hep-ph/0502041] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Datta, K. Kong and K.T. Matchev, Discrimination of supersymmetry and universal extra dimensions at hadron colliders, Phys. Rev. D 72 (2005) 096006 [Erratum ibid. D 72 (2005) 119901] [hep-ph/0509246] [INSPIRE].
  16. [16]
    A. Datta, G.L. Kane and M. Toharia, Is it SUSY?, hep-ph/0510204 [INSPIRE].
  17. [17]
    A. Barr, Measuring slepton spin at the LHC, JHEP 02 (2006) 042 [hep-ph/0511115] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B. Bhattacherjee and A. Kundu, Production of Higgs boson excitations of universal extra dimension at the large hadron collider, Phys. Lett. B 653 (2007) 300 [arXiv:0704.3340] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. ElKacimi, D. Goujdami, H. Przysiezniak and P.Z. Skands, One universal extra dimension in PYTHIA, Comput. Phys. Commun. 181 (2010) 122 [arXiv:0901.4087] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    P. Bandyopadhyay, B. Bhattacherjee and A. Datta, Search for Higgs bosons of the universal extra dimensions at the Large Hadron Collider, JHEP 03 (2010) 048 [arXiv:0909.3108][INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Choudhury, A. Datta and K. Ghosh, Deciphering universal extra dimension from the top quark signals at the CERN LHC, JHEP 08 (2010) 051 [arXiv:0911.4064] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K. Kong, K. Matchev and G. Servant, Extra dimensions at the LHC, arXiv:1001.4801 [INSPIRE].
  23. [23]
    B. Bhattacherjee and K. Ghosh, Search for the minimal universal extra dimension model at the LHC with \( \sqrt {s} = 7 \) TeV, Phys. Rev. D 83 (2011) 034003 [arXiv:1006.3043] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Datta, A. Datta and S. Poddar, Enriching the exploration of the mUED model with event shape variables at the CERN LHC, Phys. Lett. B 712 (2012) 219 [arXiv:1111.2912] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K.R. Dienes, E. Dudas and T. Gherghetta, Grand unification at intermediate mass scales through extra dimensions, Nucl. Phys. B 537 (1999) 47 [hep-ph/9806292] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    K.R. Dienes, E. Dudas and T. Gherghetta, Extra space-time dimensions and unification, Phys. Lett. B 436 (1998) 55 [hep-ph/9803466] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    G. Bhattacharyya, A. Datta, S.K. Majee and A. Raychaudhuri, Power law blitzkrieg in universal extra dimension scenarios, Nucl. Phys. B 760 (2007) 117 [hep-ph/0608208] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Servant and T.M. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    K. Kong and K. Matchev, Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions, JHEP 01 (2006) 038 [hep-ph/0509119] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    B. Dobrescu, D. Hooper, K. Kong and R. Mahbubani, Spinless photon dark matter from two universal extra dimensions, JCAP 10 (2007) 012 [arXiv:0706.3409] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G. Burdman, B.A. Dobrescu and E. Ponton, Resonances from two universal extra dimensions, Phys. Rev. D 74 (2006) 075008 [hep-ph/0601186] [INSPIRE].ADSGoogle Scholar
  32. [32]
    B.A. Dobrescu, K. Kong and R. Mahbubani, Leptons and photons at the LHC: Cascades through spinless adjoints, JHEP 07 (2007) 006 [hep-ph/0703231] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Freitas and K. Kong, Two universal extra dimensions and spinless photons at the ILC, JHEP 02 (2008) 068 [arXiv:0711.4124] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Ghosh and A. Datta, Phenomenology of spinless adjoints in two Universal Extra Dimensions, Nucl. Phys. B 800 (2008) 109 [arXiv:0801.0943] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    K. Ghosh and A. Datta, Probing two universal extra dimensions at international linear collider, Phys. Lett. B 665 (2008) 369 [arXiv:0802.2162] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Ghosh, Probing two universal extra dimension model with leptons and photons at the LHC and ILC, JHEP 04 (2009) 049 [arXiv:0809.1827] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D. Choudhury, A. Datta, D.K. Ghosh and K. Ghosh, Exploring two universal extra dimensions at the CERN LHC, JHEP 04 (2012) 057 [arXiv:1109.1400] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Appelquist, B.A. Dobrescu, E. Ponton and H.-U. Yee, Proton stability in six-dimensions, Phys. Rev. Lett. 87 (2001) 181802 [hep-ph/0107056] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    B.A. Dobrescu and E. Poppitz, Number of fermion generations derived from anomaly cancellation, Phys. Rev. Lett. 87 (2001) 031801 [hep-ph/0102010] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Donini and S. Rigolin, Anisotropic type-I string compactification, winding modes and large extra dimensions, Nucl. Phys. B 550 (1999) 59 [hep-ph/9901443] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    I. Antoniadis, K. Benakli and M. Quirós, Direct collider signatures of large extra dimensions, Phys. Lett. B 460 (1999) 176 [hep-ph/9905311] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. De Rujula, A. Donini, M. Gavela and S. Rigolin, Fat brane phenomena, Phys. Lett. B 482 (2000) 195 [hep-ph/0001335] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Dicus, C. McMullen and S. Nandi, Collider implications of Kaluza-Klein excitations of the gluons, Phys. Rev. D 65 (2002) 076007 [hep-ph/0012259] [INSPIRE].ADSGoogle Scholar
  44. [44]
    C. Macesanu, C. McMullen and S. Nandi, New signal for universal extra dimensions, Phys. Lett. B 546 (2002) 253 [hep-ph/0207269] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C. Macesanu, A. Mitov and S. Nandi, Gravity and matter in extra dimensions, Phys. Rev. D 68 (2003) 084008 [hep-ph/0305029] [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    C. Macesanu, S. Nandi and C. Rujoiu, Monojet and single photon signals from universal extra dimensions, Phys. Rev. D 73 (2006) 076001 [hep-ph/0510350] [INSPIRE].ADSGoogle Scholar
  47. [47]
    C. Macesanu, C. McMullen and S. Nandi, Collider implications of universal extra dimensions, Phys. Rev. D 66 (2002) 015009 [hep-ph/0201300] [INSPIRE].ADSGoogle Scholar
  48. [48]
    ATLAS collaboration, G. Aad et al., Search for diphoton events with large missing transverse energy in 7 TeV proton-proton collisions with the ATLAS detector, Phys. Rev. Lett. 106 (2011) 121803 [arXiv:1012.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    N. Sakai, Naturalness in supersymmetric guts, Z. Phys. C 11 (1981) 153 [INSPIRE].ADSGoogle Scholar
  51. [51]
    H. Baer and X. Tata, Weak scale supersymmetry: from superfields to scattering events, Cambridge University Press, Cambridge U.K. (2006).CrossRefGoogle Scholar
  52. [52]
    M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles, World Scientific, Singapore (2004).Google Scholar
  53. [53]
    P. Binetruy, Supersymmetry, Oxford University Press, Oxford U.K. (2006).MATHGoogle Scholar
  54. [54]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].ADSGoogle Scholar
  55. [55]
    P. Nath and M. Yamaguchi, Effects of Kaluza-Klein excitations on (g(μ) − 2), Phys. Rev. D 60 (1999) 116006 [hep-ph/9903298] [INSPIRE].ADSGoogle Scholar
  56. [56]
    D. Chakraverty, K. Huitu and A. Kundu, Effects of universal extra dimensions on \( {B^0} - {\overline B^0} \) mixing, Phys. Lett. B 558 (2003) 173 [hep-ph/0212047] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A.J. Buras, M. Spranger and A. Weiler, The impact of universal extra dimensions on the unitarity triangle and rare K and B decays, Nucl. Phys. B 660 (2003) 225 [hep-ph/0212143] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A.J. Buras, A. Poschenrieder, M. Spranger and A. Weiler, The Impact of universal extra dimensions on BX s γ, BX s gluon, BX s μ + μ , K Lπ 0 e + e and ∈′/∈, Nucl. Phys. B 678 (2004) 455 [hep-ph/0306158] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K. Agashe, N.G. Deshpande and G.-H. Wu, Universal extra dimensions and b → sγ, Phys. Lett. B 514 (2001) 309 [hep-ph/0105084] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J. Oliver, J. Papavassiliou and A. Santamaria, Universal extra dimensions and Z\( b\overline b \), Phys. Rev. D 67 (2003) 056002 [hep-ph/0212391] [INSPIRE].ADSGoogle Scholar
  61. [61]
    T. Appelquist and H.-U. Yee, Universal extra dimensions and the Higgs boson mass, Phys. Rev. D 67 (2003) 055002 [hep-ph/0211023] [INSPIRE].ADSGoogle Scholar
  62. [62]
    T.G. Rizzo and J.D. Wells, Electroweak precision measurements and collider probes of the standard model with large extra dimensions, Phys. Rev. D 61 (2000) 016007 [hep-ph/9906234] [INSPIRE].ADSGoogle Scholar
  63. [63]
    A. Strumia, Bounds on Kaluza-Klein excitations of the SM vector bosons from electroweak tests, Phys. Lett. B 466 (1999) 107 [hep-ph/9906266] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    C.D. Carone, Electroweak constraints on extended models with extra dimensions, Phys. Rev. D 61 (2000) 015008 [hep-ph/9907362] [INSPIRE].ADSGoogle Scholar
  65. [65]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].MathSciNetADSGoogle Scholar
  66. [66]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    C. Macesanu, A. Mitov and S. Nandi, Gravity and matter in extra dimensions, Phys. Rev. D 68 (2003) 084008 [hep-ph/0305029] [INSPIRE].MathSciNetADSGoogle Scholar
  68. [68]
    C. Macesanu, The phenomenology of universal extra dimensions at hadron colliders, Int. J. Mod. Phys. A 21 (2006) 2259 [hep-ph/0510418] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    ATLAS collaboration, G. Aad et al., Measurement of the Wlν and Z/γ ll production cross sections in proton-proton collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, JHEP 12 (2010) 060 [arXiv:1010.2130] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    T. Sjöstrand, S. Mrenna and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175].ADSCrossRefGoogle Scholar
  71. [71]
    ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, PHYS-PUB-2010-002 (2010).
  72. [72]
    M. ElKacimi, D. Goujdami, H. Przysiezniak and P.Z. Skands, One universal extra dimension in PYTHIA, Comput. Phys. Commun. 181 (2010) 122 [arXiv:0901.4087] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Physics and Helsinki Institute of Physics, FIN-00014University of HelsinkiHelsinkiFinland

Personalised recommendations