Advertisement

Spontaneous symmetry probing

  • Alberto Nicolis
  • Federico Piazza
Article

Abstract

For relativistic quantum field theories, we consider Lorentz breaking, spatially homogeneous field configurations or states that evolve in time along a symmetry direction. We dub this situation “spontaneous symmetry probing” (SSP). We mainly focus on internal symmetries, i.e. on symmetries that commute with the Poincaré group. We prove that the fluctuations around SSP states have a Lagrangian that is explicitly time independent, and we provide the field space parameterization that makes this manifest. We show that there is always a gapless Goldstone excitation that perturbs the system in the direction of motion in field space. Perhaps more interestingly, we show that if such a direction is part of a non-Abelian group of symmetries, the Goldstone bosons associated with spontaneously broken generators that do not commute with the SSP one acquire a gap, proportional to the SSP state’s “speed”. We outline possible applications of this formalism to inflationary cosmology.

Keywords

Global Symmetries Space-Time Symmetries Sigma Models 

References

  1. [1]
    N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP 05 (2004) 074 [hep-th/0312099] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  2. [2]
    N. Arkani-Hamed, H.-C. Cheng, M.A. Luty, S. Mukohyama and T. Wiseman, Dynamics of gravity in a Higgs phase, JHEP 01 (2007) 036 [hep-ph/0507120] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    H. Watanabe and T. Brauner, On the number of Nambu-Goldstone bosons and its relation to charge densities, Phys. Rev. D 84 (2011) 125013 [arXiv:1109.6327] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S. Coleman, Aspects of symmetry, selected Erice lectures, Cambridge University Press, Cambridge U.K. (1985).CrossRefMATHGoogle Scholar
  5. [5]
    D. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199 [INSPIRE].
  6. [6]
    A. Nicolis, R. Rattazzi and E. Trincherini, Energys and amplitudespositivity, JHEP 05 (2010) 095 [Erratum ibid. 1111 (2011) 128] [arXiv:0912.4258] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    C. de Rham and A.J. Tolley, DBI and the galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    V. Rubakov, Harrison-Zeldovich spectrum from conformal invariance, JCAP 09 (2009) 030 [arXiv:0906.3693] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Hinterbichler and J. Khoury, The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry, JCAP 04 (2012) 023 [arXiv:1106.1428] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P. Creminelli, A. Nicolis and E. Trincherini, Galilean genesis: an alternative to inflation, JCAP 11 (2010) 021 [arXiv:1007.0027] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Nicolis and F. Piazza, A relativistic non-relativistic Goldstone theorem: gapped Goldstones at finite charge density, arXiv:1204.1570 [INSPIRE].
  13. [13]
    P. Creminelli and A. Nicolis, On the regime of validity of derivatively coupled theories, in preparation.Google Scholar
  14. [14]
    A. Nicolis and R. Rattazzi, Classical and quantum consistency of the DGP model, JHEP 06 (2004) 059 [hep-th/0404159] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J. Goldstone, A. Salam and S. Weinberg, Broken symmetries, Phys. Rev. 127 (1962) 965 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  16. [16]
    E.M. Lifshitz and L.P. Pitaevskii, Statistical physics. Part 2: theory of the condensed state, Butterworth-Heinemann, Oxford U.K. (1980).Google Scholar
  17. [17]
    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    H.B. Nielsen and S. Chadha, On how to count Goldstone bosons, Nucl. Phys. B 105 (1976) 445 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R.V. Lange, Goldstone theorem in nonrelativistic theories, Phys. Rev. Lett. 14 (1965) 3 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    T. Brauner, Spontaneous symmetry breaking and Nambu-Goldstone bosons in quantum many-body systems, Symmetry 2 (2010) 609 [arXiv:1001.5212] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Weinberg, The quantum theory of fields. Volume 2: modern applications, Cambridge University Press, Cambridge U.K. (1996).CrossRefGoogle Scholar
  22. [22]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the universe: stable violation of the null energy condition and non-standard cosmologies, JHEP 12 (2006) 080 [hep-th/0606090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    N. Arkani-Hamed, P. Creminelli, S. Mukohyama and M. Zaldarriaga, Ghost inflation, JCAP 04 (2004) 001 [hep-th/0312100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE]. CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Physics and ISCAPColumbia UniversityNew YorkU.S.A.
  2. 2.Paris Center for Cosmological Physics and Laboratoire APCUniversité Paris 7ParisFrance

Personalised recommendations