Advertisement

Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals

  • Arghya Choudhury
  • Amitava Datta
Article

Abstract

If all strongly interacting sparticles (the squarks and the gluinos) in an un- constrained minimal supersymmetric standard model (MSSM) are heavier than the corre- sponding mass lower limits in the minimal supergravity (mSUGRA) model, obtained by the current LHC experiments, then the existing data allow a variety of electroweak (EW) sectors with light sparticles yielding dark matter (DM) relic density allowed by the WMAP data. Some of the sparticles may lie just above the existing lower bounds from LEP and lead to many novel DM producing mechanisms not common in mSUGRA. This is illustrated by revisiting the above squark-gluino mass limits obtained by the ATLAS Collaboration, with an unconstrained EW sector with masses not correlated with the strong sector. Using their selection criteria and the corresponding cross section limits, we find at the generator level using Pythia, that the changes in the mass limits, if any, are by at most 10-12 % in most scenarios. In some cases, however, the relaxation of the gluino mass limits are larger (≈ 20 %). If a subset of the strongly interacting sparticles in an unconstrained MSSM are within the reach of the LHC, then signals sensitive to the EW sector may be obtained. This is illustrated by simulating the blj Open image in new window T , l = e and μ, and bτ j Open image in new window T signals in i) the light stop scenario and ii) the light stop-gluino scenario with various light EW sectors allowedby the WMAP data. Some of the more general models may be realized with non-universal scalar and gaugino masses.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSGoogle Scholar
  2. [2]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSGoogle Scholar
  3. [3]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1991).Google Scholar
  4. [4]
    M. Drees, P. Roy and R.M. Godbole, Theory and phenomenology of sparticles, World Scientific, Singapore (2005).Google Scholar
  5. [5]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].ADSGoogle Scholar
  6. [6]
    ATLAS collaboration, Search for supersymmetry in pp 1 collisions at \( \sqrt {s} = 7\;TeV \) in final states with missing transverse momentum, b-jets and one lepton with the ATLAS detector, ATLAS-CONF-2011-130 (2011).Google Scholar
  7. [7]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in \( \sqrt {s} = 7\;TeV \) pp collisions using 1 fb − 1 of ATLAS data, Phys. Rev. D 85 (2012) 012006 [arXiv:1109.6606] [INSPIRE].ADSGoogle Scholar
  8. [8]
    ATLAS collaboration, G. Aad et al., Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 709 (2012) 137 [arXiv:1110.6189] [INSPIRE].ADSGoogle Scholar
  9. [9]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].ADSGoogle Scholar
  10. [10]
    CMS collaboration, Search for new physics with same-sign isolated dilepton events with jets and missing energy, PAS-SUS-11-010.Google Scholar
  11. [11]
    CMS collaboration, Search for new physics with same-sign isolated dilepton events with jets and missing energy, PAS-SUS-11-010.Google Scholar
  12. [12]
    CMS collaboration, Search for new physics with single-leptons at the LHC, PAS-SUS-11-015.Google Scholar
  13. [13]
    D. Feldman, Z. Liu and P. Nath, Connecting the direct detection of dark matter with observation of sparticles at the LHC, Phys. Rev. D 81 (2010) 095009 [arXiv:0912.4217] [INSPIRE].ADSGoogle Scholar
  14. [14]
    H. Baer, S. Kraml, A. Lessa and S. Sekmen, Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing ET , JHEP 02 (2010) 055 [arXiv:0911.4739] [INSPIRE].ADSGoogle Scholar
  15. [15]
    H.K. Dreiner, M. Krämer, J.M. Lindert and B. O’Leary, SUSY parameter determination at the LHC using cross sections and kinematic edges, JHEP 04 (2010) 109 [arXiv:1003.2648] [INSPIRE].ADSGoogle Scholar
  16. [16]
    H. Baer, V. Barger, A. Lessa and X. Tata, Capability of LHC to discover supersymmetry with \( \sqrt {s} = 7\;TeV \) and 1 fb −1, JHEP 06 (2010) 102 [arXiv:1004.3594] [INSPIRE].ADSGoogle Scholar
  17. [17]
    N. Bhattacharyya, A. Datta and S. Poddar, SUSY darkmatter at the LHC - 7 TeV, Phys. Rev. D 82 (2010) 035003 [arXiv:1005.2673] [INSPIRE].ADSGoogle Scholar
  18. [18]
    B. Altunkaynak, M. Holmes, P. Nath, B.D. Nelson and G. Peim, SUSY discovery potential and benchmarks for early runs at \( \sqrt {s} = 7\;TeV \) at the LHC, Phys. Rev. D 82 (2010) 115001 [arXiv:1008.3423] [INSPIRE].ADSGoogle Scholar
  19. [19]
    B. Mukhopadhyaya and S. Mukhopadhyay, Same-sign trileptons and four-leptons as signatures of new physics at the CERN large hadron collider, Phys. Rev. D 82 (2010) 031501 [arXiv:1005.3051] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Akula, N. Chen, D. Feldman, M. Liu, Z. Liu, et al., Interpreting the first CMS and ATLAS SUSY results, Phys. Lett. B 699 (2011) 377 [arXiv:1103.1197] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Chen, D. Feldman, Z. Liu, P. Nath and G. Peim, Low mass gluino within the sparticle landscape, implications for dark matter and early discovery prospects at LHC-7, Phys. Rev. D 83 (2011) 035005 [arXiv:1011.1246] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Bechtle, K. Desch, H. Dreiner, M. Kr¨amer, B. O’Leary, et al., Present and possible future implications for mSUGRA of the non-discovery of SUSY at the LHC, arXiv:1105.5398 [INSPIRE].
  23. [23]
    M. Guchait and D. Sengupta, Event-shape selection cuts for supersymmetry searches at the LHC with 7 TeV energy, Phys. Rev. D 84 (2011) 055010 [arXiv:1102.4785] [INSPIRE].ADSGoogle Scholar
  24. [24]
    O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis, et al., Supersymmetry in light of 1/fb of LHC data, Eur. Phys. J. C 72 (2012) 1878 [arXiv:1110.3568] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Badziak and K. Sakurai, LHC constraints on Yukawa unification in SO(10), JHEP 02 (2012) 125 [arXiv:1112.4796] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].ADSGoogle Scholar
  28. [28]
    L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].ADSGoogle Scholar
  29. [29]
    P. Nath, R.L. Arnowitt and A.H. Chamseddine, Gauge hierarchy in supergravity GUTs, Nucl. Phys. B 227 (1983) 121 [INSPIRE].ADSGoogle Scholar
  30. [30]
    N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].ADSGoogle Scholar
  31. [31]
    LEP SUSY working group, ALEPH, DELPHI, L3, OPAL Experiments, http://lepsusy.web.cern.ch/lepsusy/.
  32. [32]
    W.L. Freedman and M.S. Turner, Measuring and understanding the universe, Rev. Mod. Phys. 75 (2003) 1433 [astro-ph/0308418] [INSPIRE].ADSGoogle Scholar
  33. [33]
    L. Roszkowski, Particle dark matter — A theorist’s perspective, Pramana 62 (2004) 389.ADSGoogle Scholar
  34. [34]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSGoogle Scholar
  35. [35]
    H. Baer and X. Tata, Dark matter and the LHC, in Physics at the Large Hadron Collider, Indian National Science Academy, A. Datta, B. Mukhopadhyaya and A. Raychaudhuri eds, Springer, New York U.S.A. (2009).Google Scholar
  36. [36]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSGoogle Scholar
  37. [37]
    N. Baro, F. Boudjema and A. Semenov, Full one-loop corrections to the relic density in the MSSM: a few examples, Phys. Lett. B 660 (2008) 550 [arXiv:0710.1821] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Akula, D. Feldman, Z. Liu, P. Nath and G. Peim, New constraints on dark matter from CMS and ATLAS data, Mod. Phys. Lett. A 26 (2011) 1521 [arXiv:1103.5061] [INSPIRE].ADSGoogle Scholar
  39. [39]
    N. Bhattacharyya, A. Choudhury and A. Datta, Low mass neutralino dark matter in mSUGRA and more general models in the light of LHC data, Phys. Rev. D 84 (2011) 095006 [arXiv:1107.1997] [INSPIRE].ADSGoogle Scholar
  40. [40]
    C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of neutralino stop coannihilation in the CMSSM, Astropart. Phys. 18 (2003) 395 [hep-ph/0112113] [INSPIRE].ADSGoogle Scholar
  42. [42]
    H. Baer, K. Hagiwara and X. Tata, Gauginos as a signal for supersymmetry at \( p\overline p \) colliders, Phys. Rev. D 35 (1987) 1598 [INSPIRE].ADSGoogle Scholar
  43. [43]
    P. Nath and R.L. Arnowitt, Supersymmetric signals at the Tevatron, Mod. Phys. Lett. A 2 (1987) 331 [INSPIRE].ADSGoogle Scholar
  44. [44]
    H. Baer and X. Tata, Probing charginos and neutralinos beyond the reach of LEP at the Tevatron collider, Phys. Rev. D 47 (1993) 2739 [INSPIRE].ADSGoogle Scholar
  45. [45]
    H. Baer, C. Kao and X. Tata, Aspects of chargino - Neutralino production at the Tevatron collider, Phys. Rev. D 48 (1993) 5175 [hep-ph/9307347] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. Mrenna, G.L. Kane, G.D. Kribs and J.D. Wells, Possible signals of constrained minimal supersymmetry at a high luminosity Fermilab Tevatron collider, Phys. Rev. D 53 (1996) 1168 [hep-ph/9505245] [INSPIRE].ADSGoogle Scholar
  47. [47]
    Z. Sullivan and E.L. Berger, Trilepton production at the CERN LHC: standard model sources and beyond, Phys. Rev. D 78 (2008) 034030 [arXiv:0805.3720] [INSPIRE].ADSGoogle Scholar
  48. [48]
    G. Bozzi, B. Fuks and M. Klasen, Transverse-momentum resummation for slepton-pair production at the CERN LHC, Phys. Rev. D 74 (2006) 015001 [hep-ph/0603074] [INSPIRE].ADSGoogle Scholar
  49. [49]
    G. Bozzi, B. Fuks and M. Klasen, Threshold resummation for slepton-pair production at hadron colliders, Nucl. Phys. B 777 (2007) 157 [hep-ph/0701202] [INSPIRE].ADSGoogle Scholar
  50. [50]
    G. Bozzi, B. Fuks and M. Klasen, Joint resummation for slepton pair production at hadron colliders, Nucl. Phys. B 794 (2008) 46 [arXiv:0709.3057] [INSPIRE].ADSGoogle Scholar
  51. [51]
    F. Borzumati and K. Hagiwara, Testing supersymmetry at the LHC through gluon-fusion production of a slepton pair, JHEP 03 (2011) 103 [arXiv:0912.0454] [INSPIRE].ADSGoogle Scholar
  52. [52]
    CMS collaboration, G. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].ADSGoogle Scholar
  53. [53]
    N. Bhattacharyya and A. Datta, Tracking down the elusive charginos / neutralinos through τ leptons at the large hadron collider, Phys. Rev. D 80 (2009) 055016 [arXiv:0906.1460] [INSPIRE].ADSGoogle Scholar
  54. [54]
    N. Bhattacharyya, A. Choudhury and A. Datta, SUSY signals with small and large trilinear couplings at the LHC 7 TeV runs and neutralino dark matter, Phys. Rev. D 83 (2011) 115025 [arXiv:1104.0333] [INSPIRE].ADSGoogle Scholar
  55. [55]
    N. Bhattacharyya, A. Datta and M. Maity, Search for top squarks at Tevatron inspired by dark matter and electroweak baryogenesis, Phys. Lett. B 669 (2008) 311 [arXiv:0807.0994] [INSPIRE].ADSGoogle Scholar
  56. [56]
    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].ADSGoogle Scholar
  57. [57]
    N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].ADSGoogle Scholar
  58. [58]
    K. Huitu, L. Leinonen and J. Laamanen, Stop as a next-to-lightest supersymmetric particle in constrained MSSM, Phys. Rev. D 84 (2011) 075021 [arXiv:1107.2128] [INSPIRE].ADSGoogle Scholar
  59. [59]
    X.-J. Bi, Q.-S. Yan and P.-F. Yin, Probing light stop pairs at the LHC, Phys. Rev. D 85 (2012) 035005 [arXiv:1111.2250] [INSPIRE].ADSGoogle Scholar
  60. [60]
    S. Bornhauser, M. Drees, S. Grab and J. Kim, Light stop searches at the LHC in events with two b-jets and missing energy, Phys. Rev. D 83 (2011) 035008 [arXiv:1011.5508] [INSPIRE].ADSGoogle Scholar
  61. [61]
    M. Drees, M. Hanussek and J.S. Kim, Light stop searches at the LHC with monojet events, arXiv:1201.5714 [INSPIRE].
  62. [62]
    B. He, T. Li and Q. Shafi, Impact of LHC searches on light top squark, arXiv:1112.4461 [INSPIRE].
  63. [63]
    C. Boehm, A. Djouadi and Y. Mambrini, Decays of the lightest top squark, Phys. Rev. D 61 (2000) 095006 [hep-ph/9907428] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S.P. Das, A. Datta and M. Guchait, Four-body decay of the stop squark at the upgraded Tevatron, Phys. Rev. D 65 (2002) 095006 [hep-ph/0112182] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S.P. Das, A. Datta and M. Maity, Top squark mass: current limits revisited and new limits from Tevatron run I, Phys. Lett. B 596 (2004) 293 [hep-ph/0404049] [INSPIRE].ADSGoogle Scholar
  66. [66]
    R. Arnowitt, A.H. Chamseddine and P. Nath, Problems in unification and supergravity, La Jolla Institute (1983) [http://www.osti.gov/bridge/servlets/purl/5986323-fY7neR/5986323.pdf].
  67. [67]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and K. Tamvakis, Gaugino masses and grand unification, Phys. Lett. B 155 (1985) 381 [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Drees, Phenomenological consequences of N = 1 supergravity theories with nonminimal kinetic energy terms for vector superfields, Phys. Lett. B 158 (1985) 409 [INSPIRE].ADSGoogle Scholar
  69. [69]
    A. Corsetti and P. Nath, Gaugino mass nonuniversality and dark matter in SUGRA, strings and D-brane models, Phys. Rev. D 64 (2001) 125010 [hep-ph/0003186] [INSPIRE].ADSGoogle Scholar
  70. [70]
    S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].ADSGoogle Scholar
  71. [71]
    P. Moxhay and K. Yamamoto, Effects of grand unification interactions on weak symmetry breaking in supergravity theories, Nucl. Phys. B 256 (1985) 130 [INSPIRE].ADSGoogle Scholar
  72. [72]
    B.a. Gato, Can the SU(5) running be neglected in the minimal N = 1 SUGRA model?, Nucl. Phys. B 278 (1986) 189 [INSPIRE].ADSGoogle Scholar
  73. [73]
    N. Polonsky and A. Pomarol, Nonuniversal GUT corrections to the soft terms and their implications in supergravity models, Phys. Rev. D 51 (1995) 6532 [hep-ph/9410231] [INSPIRE].ADSGoogle Scholar
  74. [74]
    J.R. Ellis, D.V. Nanopoulos and K.A. Olive, Lower limits on soft supersymmetry breaking scalar masses, Phys. Lett. B 525 (2002) 308 [hep-ph/0109288] [INSPIRE].ADSGoogle Scholar
  75. [75]
    M. Drees, Intermediate scale symmetry breaking and the spectrum of super partners in superstring inspired supergravity models, Phys. Lett. B 181 (1986) 279 [INSPIRE].ADSGoogle Scholar
  76. [76]
    Y. Kawamura, H. Murayama and M. Yamaguchi, Low-energy effective Lagrangian in unified theories with nonuniversal supersymmetry breaking terms, Phys. Rev. D 51 (1995) 1337 [hep-ph/9406245] [INSPIRE].ADSGoogle Scholar
  77. [77]
    A. Datta, M. Guchait and N. Parua, Squark gluino mass limits revisited for nonuniversal scalar masses, Phys. Lett. B 395 (1997) 54 [hep-ph/9609413] [INSPIRE].ADSGoogle Scholar
  78. [78]
    A. Datta, A. Datta and M. Parida, Signatures of nonuniversal soft breaking sfermion masses at hadron colliders, Phys. Lett. B 431 (1998) 347 [hep-ph/9801242] [INSPIRE].ADSGoogle Scholar
  79. [79]
    A. Datta, A. Datta, M. Drees and D. Roy, Effects of SO(10) D terms on SUSY signals at the Tevatron, Phys. Rev. D 61 (2000) 055003 [hep-ph/9907444] [INSPIRE].ADSGoogle Scholar
  80. [80]
    S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept. 425 (2006) 265 [hep-ph/0412214] [INSPIRE].ADSGoogle Scholar
  81. [81]
    S. Heinemeyer, MSSM Higgs physics at higher orders, Int. J. Mod. Phys. A 21 (2006) 2659 [hep-ph/0407244] [INSPIRE].ADSGoogle Scholar
  82. [82]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSGoogle Scholar
  83. [83]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar
  84. [84]
    LEP Working Group for Higgs boson searches, ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  85. [85]
    G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].ADSMATHGoogle Scholar
  86. [86]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSMATHGoogle Scholar
  87. [87]
    M. Muhlleitner, A. Djouadi and Y. Mambrini, Sdecay: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].ADSGoogle Scholar
  88. [88]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSGoogle Scholar
  89. [89]
    XENON100 collaboration, E. Aprile et al., Implications on inelastic dark matter from 100 live days of XENON100 data, Phys. Rev. D 84 (2011) 061101 [arXiv:1104.3121] [INSPIRE].ADSGoogle Scholar
  90. [90]
    XENON100 collaboration, E. Aprile et al., The XENON100 dark matter experiment, Astropart. Phys. 35 (2012) 573 [arXiv:1107.2155] [INSPIRE].ADSGoogle Scholar
  91. [91]
    C. Beskidt, W. de Boer, D. Kazakov and F. Ratnikov, Where is SUSY?, JHEP 05 (2012) 094 [arXiv:1202.3366] [INSPIRE].ADSGoogle Scholar
  92. [92]
    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  93. [93]
    ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt {s} = 7\;TeV \) with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].ADSGoogle Scholar
  94. [94]
    ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the decay −1 channel H → Z Z → 4l with 4.8 fb of pp collision data at \( \sqrt {s} = 7\;TeV \) with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].ADSGoogle Scholar
  95. [95]
    CMS collaboration, S. Chatrchyan et al., Search for a Higgs boson in the decay channel H to Z Z * to \( q\overline q {l^{ - }}{l^{ + }} \) in pp collisions at \( \sqrt {s} = 7\;TeV \) , JHEP 04 (2012) 036 [arXiv:1202.1416] [INSPIRE].ADSGoogle Scholar
  96. [96]
    S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt {s} = 7\;TeV \) , Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].ADSGoogle Scholar
  97. [97]
    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7\;TeV \), arXiv:1202.1488.
  98. [98]
    S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].ADSGoogle Scholar
  99. [99]
    CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the decay channel H to Z Z to 4 leptons in pp collisions at \( \sqrt {s} = 7\;TeV \), arXiv:1202.1997 [INSPIRE].
  100. [100]
    S. Heinemeyer, O. Stål and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Physics Letters B 710 (2012) 201 [arXiv:1112.3026].ADSGoogle Scholar
  101. [101]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSGoogle Scholar
  102. [102]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSGoogle Scholar
  103. [103]
    O. Buchmueller, R. Cavanaugh, A. De Roeck, M.J. Dolan, J.R. Ellis, H. Flacher, S. Heinemeyer, G. Isidori, J. Marrouche, D. Martinez Santos, K.A. Olive, S. Rogerson, F.J. Ronga, K.J. de Vries and G. Weiglein, Higgs and supersymmetry, arXiv:1112.3564.
  104. [104]
    S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].ADSGoogle Scholar
  105. [105]
    S. Heinemeyer, Implications of SUSY searches at the LHC for the ILC, arXiv:1202.1991 [INSPIRE].
  106. [106]
    K.A. Olive, The impact of XENON100 and the LHC on supersymmetric dark matter, arXiv:1202.2324 [INSPIRE].
  107. [107]
    J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, arXiv:1202.3262.
  108. [108]
    A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE].
  109. [109]
    T. Sjöstrand, P. Eden, C. Friberg, L. Lönnblad, G. Miu, et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017] [INSPIRE].ADSMATHGoogle Scholar
  110. [110]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSGoogle Scholar
  111. [111]
    CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].ADSGoogle Scholar
  112. [112]
    P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  113. [113]
    R.J. Scalise, The coordinated theoretical-experimental project on QCD, http://www.phys.psu.edu/cteq.
  114. [114]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].ADSGoogle Scholar
  115. [115]
    W. Beenakker, R. Hoepker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, arXiv:hep-ph/9611232.Google Scholar
  116. [116]
    M. Drees and C.-L. Shan, Reconstructing the velocity distribution of WIMPs from direct dark matter detection data, JCAP 06 (2007) 011 [astro-ph/0703651] [INSPIRE].ADSGoogle Scholar
  117. [117]
    O. Mena, S. Palomares-Ruiz and S. Pascoli, Reconstructing WIMP properties with neutrino detectors, Phys. Lett. B 664 (2008) 92 [arXiv:0706.3909] [INSPIRE].ADSGoogle Scholar
  118. [118]
    A.M. Green, Determining the WIMP mass from a single direct detection experiment, a more detailed study, JCAP 07 (2008) 005 [arXiv:0805.1704] [INSPIRE].ADSGoogle Scholar
  119. [119]
    C-L Shan, Dark matter and particle physics, New. J. Phys. 11 (2009) 105013.Google Scholar
  120. [120]
    J. Billard, F. Mayet and D. Santos, Markov chain Monte Carlo analysis to constrain dark matter properties with directional detection, Phys. Rev. D 83 (2011) 075002 [arXiv:1012.3960] [INSPIRE].ADSGoogle Scholar
  121. [121]
    S. Choi, S. Scopel, N. Fornengo and A. Bottino, Search at the CERN LHC for a light neutralino of cosmological interest, Phys. Rev. D 85 (2012) 035009 [arXiv:1108.2190] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Indian Institute of Science Education and Research — KolkataNadiaIndia

Personalised recommendations