# Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals

## Abstract

If all strongly interacting sparticles (the squarks and the gluinos) in an un- constrained minimal supersymmetric standard model (MSSM) are heavier than the corre- sponding mass lower limits in the minimal supergravity (mSUGRA) model, obtained by the current LHC experiments, then the existing data allow a variety of electroweak (EW) sectors with light sparticles yielding dark matter (DM) relic density allowed by the WMAP data. Some of the sparticles may lie just above the existing lower bounds from LEP and lead to many novel DM producing mechanisms not common in mSUGRA. This is illustrated by revisiting the above squark-gluino mass limits obtained by the ATLAS Collaboration, with an unconstrained EW sector with masses not correlated with the strong sector. Using their selection criteria and the corresponding cross section limits, we find at the generator level using Pythia, that the changes in the mass limits, if any, are by at most 10-12 % in most scenarios. In some cases, however, the relaxation of the gluino mass limits are larger (≈ 20 %). If a subset of the strongly interacting sparticles in an unconstrained MSSM are within the reach of the LHC, then signals sensitive to the EW sector may be obtained. This is illustrated by simulating the *blj* Open image in new window _{ T } , l = e and μ, and *bτ j* Open image in new window _{ T } signals in i) the light stop scenario and ii) the light stop-gluino scenario with various light EW sectors allowedby the WMAP data. Some of the more general models may be realized with non-universal scalar and gaugino masses.

## Keywords

Supersymmetry Phenomenology## References

- [1]H.P. Nilles,
*Supersymmetry, supergravity and particle physics, Phys. Rept.***110**(1984) 1 [INSPIRE].ADSGoogle Scholar - [2]H.E. Haber and G.L. Kane,
*The search for supersymmetry: probing physics beyond the standard model, Phys. Rept.***117**(1985) 75 [INSPIRE].ADSGoogle Scholar - [3]J. Wess and J. Bagger,
*Supersymmetry and supergravity*, Princeton University Press, Princeton U.S.A. (1991).Google Scholar - [4]M. Drees, P. Roy and R.M. Godbole,
*Theory and phenomenology of sparticles*, World Scientific, Singapore (2005).Google Scholar - [5]ATLAS collaboration, G. Aad et al.,
*Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in*\( \sqrt {s} = 7\;TeV \)*proton-proton collisions, Phys. Lett.***B 710**(2012) 67 [arXiv:1109.6572] [INSPIRE].ADSGoogle Scholar - [6]ATLAS collaboration,
*Search for supersymmetry in pp 1 collisions at*\( \sqrt {s} = 7\;TeV \)*in final states with missing transverse momentum, b-jets and one lepton with the ATLAS detector*, ATLAS-CONF-2011-130 (2011).Google Scholar - [7]ATLAS collaboration, G. Aad et al.,
*Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in*\( \sqrt {s} = 7\;TeV \)*pp collisions using 1 fb − 1 of ATLAS data, Phys. Rev.***D 85**(2012) 012006 [arXiv:1109.6606] [INSPIRE].ADSGoogle Scholar - [8]ATLAS collaboration, G. Aad et al.,
*Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in*\( \sqrt {s} = 7\;TeV \)*proton-proton collisions, Phys. Lett.***B 709**(2012) 137 [arXiv:1110.6189] [INSPIRE].ADSGoogle Scholar - [9]CMS collaboration, S. Chatrchyan et al.,
*Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett.***107**(2011) 221804 [arXiv:1109.2352] [INSPIRE].ADSGoogle Scholar - [10]CMS collaboration,
*Search for new physics with same-sign isolated dilepton events with jets and missing energy*, PAS-SUS-11-010.Google Scholar - [11]CMS collaboration,
*Search for new physics with same-sign isolated dilepton events with jets and missing energy*, PAS-SUS-11-010.Google Scholar - [12]CMS collaboration,
*Search for new physics with single-leptons at the LHC*, PAS-SUS-11-015.Google Scholar - [13]D. Feldman, Z. Liu and P. Nath,
*Connecting the direct detection of dark matter with observation of sparticles at the LHC, Phys. Rev.***D 81**(2010) 095009 [arXiv:0912.4217] [INSPIRE].ADSGoogle Scholar - [14]H. Baer, S. Kraml, A. Lessa and S. Sekmen,
*Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing ET , JHEP***02**(2010) 055 [arXiv:0911.4739] [INSPIRE].ADSGoogle Scholar - [15]H.K. Dreiner, M. Krämer, J.M. Lindert and B. O’Leary, S
*USY parameter determination at the LHC using cross sections and kinematic edges, JHEP***04**(2010) 109 [arXiv:1003.2648] [INSPIRE].ADSGoogle Scholar - [16]H. Baer, V. Barger, A. Lessa and X. Tata,
*Capability of LHC to discover supersymmetry with*\( \sqrt {s} = 7\;TeV \)*and 1 fb*^{−1},*JHEP***06**(2010) 102 [arXiv:1004.3594] [INSPIRE].ADSGoogle Scholar - [17]N. Bhattacharyya, A. Datta and S. Poddar,
*SUSY darkmatter at the LHC - 7 TeV, Phys. Rev.***D 82**(2010) 035003 [arXiv:1005.2673] [INSPIRE].ADSGoogle Scholar - [18]B. Altunkaynak, M. Holmes, P. Nath, B.D. Nelson and G. Peim,
*SUSY discovery potential and benchmarks for early runs at*\( \sqrt {s} = 7\;TeV \)*at the LHC, Phys. Rev.***D 82**(2010) 115001 [arXiv:1008.3423] [INSPIRE].ADSGoogle Scholar - [19]B. Mukhopadhyaya and S. Mukhopadhyay,
*Same-sign trileptons and four-leptons as signatures of new physics at the CERN large hadron collider, Phys. Rev.***D 82**(2010) 031501 [arXiv:1005.3051] [INSPIRE].ADSGoogle Scholar - [20]S. Akula, N. Chen, D. Feldman, M. Liu, Z. Liu, et al.,
*Interpreting the first CMS and ATLAS SUSY results, Phys. Lett.***B 699**(2011) 377 [arXiv:1103.1197] [INSPIRE].ADSGoogle Scholar - [21]N. Chen, D. Feldman, Z. Liu, P. Nath and G. Peim,
*Low mass gluino within the sparticle landscape, implications for dark matter and early discovery prospects at LHC-7*,*Phys. Rev.***D 83**(2011) 035005 [arXiv:1011.1246] [INSPIRE].ADSGoogle Scholar - [22]P. Bechtle, K. Desch, H. Dreiner, M. Kr¨amer, B. O’Leary, et al.,
*Present and possible future implications for mSUGRA of the non-discovery of SUSY at the LHC*, arXiv:1105.5398 [INSPIRE]. - [23]M. Guchait and D. Sengupta,
*Event-shape selection cuts for supersymmetry searches at the LHC with 7 TeV energy, Phys. Rev.***D 84**(2011) 055010 [arXiv:1102.4785] [INSPIRE].ADSGoogle Scholar - [24]O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis, et al.,
*Supersymmetry in light of 1/fb of LHC data, Eur. Phys. J.***C 72**(2012) 1878 [arXiv:1110.3568] [INSPIRE].ADSGoogle Scholar - [25]M. Badziak and K. Sakurai,
*LHC constraints on Yukawa unification in SO(10), JHEP***02**(2012) 125 [arXiv:1112.4796] [INSPIRE].ADSGoogle Scholar - [26]A.H. Chamseddine, R.L. Arnowitt and P. Nath,
*Locally supersymmetric grand unification, Phys. Rev. Lett.***49**(1982) 970 [INSPIRE].ADSGoogle Scholar - [27]R. Barbieri, S. Ferrara and C.A. Savoy,
*Gauge models with spontaneously broken local supersymmetry, Phys. Lett.***B 119**(1982) 343 [INSPIRE].ADSGoogle Scholar - [28]L.J. Hall, J.D. Lykken and S. Weinberg,
*Supergravity as the messenger of supersymmetry breaking, Phys. Rev.***D 27**(1983) 2359 [INSPIRE].ADSGoogle Scholar - [29]P. Nath, R.L. Arnowitt and A.H. Chamseddine,
*Gauge hierarchy in supergravity GUTs, Nucl. Phys.***B 227**(1983) 121 [INSPIRE].ADSGoogle Scholar - [30]N. Ohta,
*Grand unified theories based on local supersymmetry, Prog. Theor. Phys.***70**(1983) 542 [INSPIRE].ADSGoogle Scholar - [31]LEP SUSY working group,
*ALEPH, DELPHI, L3, OPAL Experiments*, http://lepsusy.web.cern.ch/lepsusy/. - [32]W.L. Freedman and M.S. Turner,
*Measuring and understanding the universe, Rev. Mod. Phys.***75**(2003) 1433 [astro-ph/0308418] [INSPIRE].ADSGoogle Scholar - [33]L. Roszkowski,
*Particle dark matter — A theorist’s perspective, Pramana***62**(2004) 389.ADSGoogle Scholar - [34]G. Bertone, D. Hooper and J. Silk,
*Particle dark matter: evidence, candidates and constraints, Phys. Rept.***405**(2005) 279 [hep-ph/0404175] [INSPIRE].ADSGoogle Scholar - [35]H. Baer and X. Tata, Dark matter and the LHC, in Physics at the Large Hadron Collider, Indian National Science Academy, A. Datta, B. Mukhopadhyaya and A. Raychaudhuri eds, Springer, New York U.S.A. (2009).Google Scholar
- [36]WMAP collaboration, E. Komatsu et al.,
*Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl.***192**(2011) 18 [arXiv:1001.4538] [INSPIRE].ADSGoogle Scholar - [37]N. Baro, F. Boudjema and A. Semenov,
*Full one-loop corrections to the relic density in the MSSM: a few examples, Phys. Lett.***B 660**(2008) 550 [arXiv:0710.1821] [INSPIRE].ADSGoogle Scholar - [38]S. Akula, D. Feldman, Z. Liu, P. Nath and G. Peim,
*New constraints on dark matter from CMS and ATLAS data, Mod. Phys. Lett.***A 26**(2011) 1521 [arXiv:1103.5061] [INSPIRE].ADSGoogle Scholar - [39]N. Bhattacharyya, A. Choudhury and A. Datta,
*Low mass neutralino dark matter in mSUGRA and more general models in the light of LHC data, Phys. Rev.***D 84**(2011) 095006 [arXiv:1107.1997] [INSPIRE].ADSGoogle Scholar - [40]C. Boehm, A. Djouadi and M. Drees,
*Light scalar top quarks and supersymmetric dark matter, Phys. Rev.***D 62**(2000) 035012 [hep-ph/9911496] [INSPIRE].ADSGoogle Scholar - [41]J.R. Ellis, K.A. Olive and Y. Santoso,
*Calculations of neutralino stop coannihilation in the CMSSM, Astropart. Phys.***18**(2003) 395 [hep-ph/0112113] [INSPIRE].ADSGoogle Scholar - [42]H. Baer, K. Hagiwara and X. Tata,
*Gauginos as a signal for supersymmetry at*\( p\overline p \)*colliders, Phys. Rev.***D 35**(1987) 1598 [INSPIRE].ADSGoogle Scholar - [43]P. Nath and R.L. Arnowitt,
*Supersymmetric signals at the Tevatron, Mod. Phys. Lett.***A 2**(1987) 331 [INSPIRE].ADSGoogle Scholar - [44]H. Baer and X. Tata,
*Probing charginos and neutralinos beyond the reach of LEP at the Tevatron collider, Phys. Rev.***D 47**(1993) 2739 [INSPIRE].ADSGoogle Scholar - [45]H. Baer, C. Kao and X. Tata,
*Aspects of chargino - Neutralino production at the Tevatron collider, Phys. Rev.***D 48**(1993) 5175 [hep-ph/9307347] [INSPIRE].ADSGoogle Scholar - [46]S. Mrenna, G.L. Kane, G.D. Kribs and J.D. Wells,
*Possible signals of constrained minimal supersymmetry at a high luminosity Fermilab Tevatron collider, Phys. Rev.***D 53**(1996) 1168 [hep-ph/9505245] [INSPIRE].ADSGoogle Scholar - [47]Z. Sullivan and E.L. Berger,
*Trilepton production at the CERN LHC: standard model sources and beyond, Phys. Rev.***D 78**(2008) 034030 [arXiv:0805.3720] [INSPIRE].ADSGoogle Scholar - [48]G. Bozzi, B. Fuks and M. Klasen,
*Transverse-momentum resummation for slepton-pair production at the CERN LHC, Phys. Rev.***D 74**(2006) 015001 [hep-ph/0603074] [INSPIRE].ADSGoogle Scholar - [49]G. Bozzi, B. Fuks and M. Klasen,
*Threshold resummation for slepton-pair production at hadron colliders, Nucl. Phys.***B 777**(2007) 157 [hep-ph/0701202] [INSPIRE].ADSGoogle Scholar - [50]G. Bozzi, B. Fuks and M. Klasen,
*Joint resummation for slepton pair production at hadron colliders, Nucl. Phys.***B 794**(2008) 46 [arXiv:0709.3057] [INSPIRE].ADSGoogle Scholar - [51]F. Borzumati and K. Hagiwara,
*Testing supersymmetry at the LHC through gluon-fusion production of a slepton pair, JHEP***03**(2011) 103 [arXiv:0912.0454] [INSPIRE].ADSGoogle Scholar - [52]CMS collaboration, G. Bayatian et al.,
*CMS technical design report, volume II: Physics performance, J. Phys.***G 34**(2007) 995 [INSPIRE].ADSGoogle Scholar - [53]N. Bhattacharyya and A. Datta,
*Tracking down the elusive charginos / neutralinos through τ leptons at the large hadron collider, Phys. Rev.***D 80**(2009) 055016 [arXiv:0906.1460] [INSPIRE].ADSGoogle Scholar - [54]N. Bhattacharyya, A. Choudhury and A. Datta,
*SUSY signals with small and large trilinear couplings at the LHC 7 TeV runs and neutralino dark matter, Phys. Rev.***D 83**(2011) 115025 [arXiv:1104.0333] [INSPIRE].ADSGoogle Scholar - [55]N. Bhattacharyya, A. Datta and M. Maity,
*Search for top squarks at Tevatron inspired by dark matter and electroweak baryogenesis, Phys. Lett.***B 669**(2008) 311 [arXiv:0807.0994] [INSPIRE].ADSGoogle Scholar - [56]C. Brust, A. Katz, S. Lawrence and R. Sundrum,
*SUSY, the third generation and the LHC, JHEP***03**(2012) 103 [arXiv:1110.6670] [INSPIRE].ADSGoogle Scholar - [57]N. Desai and B. Mukhopadhyaya,
*Constraints on supersymmetry with light third family from LHC data, JHEP***05**(2012) 057 [arXiv:1111.2830] [INSPIRE].ADSGoogle Scholar - [58]K. Huitu, L. Leinonen and J. Laamanen,
*Stop as a next-to-lightest supersymmetric particle in constrained MSSM, Phys. Rev.***D 84**(2011) 075021 [arXiv:1107.2128] [INSPIRE].ADSGoogle Scholar - [59]X.-J. Bi, Q.-S. Yan and P.-F. Yin,
*Probing light stop pairs at the LHC, Phys. Rev.***D 85**(2012) 035005 [arXiv:1111.2250] [INSPIRE].ADSGoogle Scholar - [60]S. Bornhauser, M. Drees, S. Grab and J. Kim,
*Light stop searches at the LHC in events with two b-jets and missing energy, Phys. Rev.***D 83**(2011) 035008 [arXiv:1011.5508] [INSPIRE].ADSGoogle Scholar - [61]M. Drees, M. Hanussek and J.S. Kim,
*Light stop searches at the LHC with monojet events,*arXiv:1201.5714 [INSPIRE]. - [62]B. He, T. Li and Q. Shafi,
*Impact of LHC searches on light top squark*, arXiv:1112.4461 [INSPIRE]. - [63]C. Boehm, A. Djouadi and Y. Mambrini,
*Decays of the lightest top squark, Phys. Rev.***D 61**(2000) 095006 [hep-ph/9907428] [INSPIRE].ADSGoogle Scholar - [64]S.P. Das, A. Datta and M. Guchait,
*Four-body decay of the stop squark at the upgraded Tevatron, Phys. Rev.***D 65**(2002) 095006 [hep-ph/0112182] [INSPIRE].ADSGoogle Scholar - [65]S.P. Das, A. Datta and M. Maity,
*Top squark mass: current limits revisited and new limits from Tevatron run I, Phys. Lett.***B 596**(2004) 293 [hep-ph/0404049] [INSPIRE].ADSGoogle Scholar - [66]R. Arnowitt, A.H. Chamseddine and P. Nath,
*Problems in unification and supergravity, La Jolla Institute*(1983) [http://www.osti.gov/bridge/servlets/purl/5986323-fY7neR/5986323.pdf]. - [67]J.R. Ellis, K. Enqvist, D.V. Nanopoulos and K. Tamvakis,
*Gaugino masses and grand unification, Phys. Lett.***B 155**(1985) 381 [INSPIRE].ADSGoogle Scholar - [68]M. Drees,
*Phenomenological consequences of N = 1 supergravity theories with nonminimal kinetic energy terms for vector superfields, Phys. Lett.***B 158**(1985) 409 [INSPIRE].ADSGoogle Scholar - [69]A. Corsetti and P. Nath,
*Gaugino mass nonuniversality and dark matter in SUGRA, strings and D-brane models, Phys. Rev.***D 64**(2001) 125010 [hep-ph/0003186] [INSPIRE].ADSGoogle Scholar - [70]S.P. Martin,
*Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev.***D 79**(2009) 095019 [arXiv:0903.3568] [INSPIRE].ADSGoogle Scholar - [71]P. Moxhay and K. Yamamoto,
*Effects of grand unification interactions on weak symmetry breaking in supergravity theories, Nucl. Phys.***B 256**(1985) 130 [INSPIRE].ADSGoogle Scholar - [72]B.a. Gato,
*Can the*SU(5)*running be neglected in the minimal N = 1 SUGRA model?, Nucl. Phys.***B 278**(1986) 189 [INSPIRE].ADSGoogle Scholar - [73]N. Polonsky and A. Pomarol,
*Nonuniversal GUT corrections to the soft terms and their implications in supergravity models, Phys. Rev.***D 51**(1995) 6532 [hep-ph/9410231] [INSPIRE].ADSGoogle Scholar - [74]J.R. Ellis, D.V. Nanopoulos and K.A. Olive,
*Lower limits on soft supersymmetry breaking scalar masses, Phys. Lett.***B 525**(2002) 308 [hep-ph/0109288] [INSPIRE].ADSGoogle Scholar - [75]M. Drees,
*Intermediate scale symmetry breaking and the spectrum of super partners in superstring inspired supergravity models, Phys. Lett.***B 181**(1986) 279 [INSPIRE].ADSGoogle Scholar - [76]Y. Kawamura, H. Murayama and M. Yamaguchi,
*Low-energy effective Lagrangian in unified theories with nonuniversal supersymmetry breaking terms, Phys. Rev.***D 51**(1995) 1337 [hep-ph/9406245] [INSPIRE].ADSGoogle Scholar - [77]A. Datta, M. Guchait and N. Parua,
*Squark gluino mass limits revisited for nonuniversal scalar masses, Phys. Lett.***B 395**(1997) 54 [hep-ph/9609413] [INSPIRE].ADSGoogle Scholar - [78]A. Datta, A. Datta and M. Parida,
*Signatures of nonuniversal soft breaking sfermion masses at hadron colliders, Phys. Lett.***B 431**(1998) 347 [hep-ph/9801242] [INSPIRE].ADSGoogle Scholar - [79]A. Datta, A. Datta, M. Drees and D. Roy,
*Effects of*SO(10)*D terms on SUSY signals at the Tevatron, Phys. Rev.***D 61**(2000) 055003 [hep-ph/9907444] [INSPIRE].ADSGoogle Scholar - [80]S. Heinemeyer, W. Hollik and G. Weiglein,
*Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept.***425**(2006) 265 [hep-ph/0412214] [INSPIRE].ADSGoogle Scholar - [81]S. Heinemeyer,
*MSSM Higgs physics at higher orders, Int. J. Mod. Phys.***A 21**(2006) 2659 [hep-ph/0407244] [INSPIRE].ADSGoogle Scholar - [82]G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein,
*Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J.***C 28**(2003) 133 [hep-ph/0212020] [INSPIRE].ADSGoogle Scholar - [83]S. Heinemeyer, W. Hollik and G. Weiglein,
*The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J.***C 9**(1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar - [84]LEP Working Group for Higgs boson searches, ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL collaboration, R. Barate et al.,
*Search for the standard model Higgs boson at LEP, Phys. Lett.***B 565**(2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar - [85]G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, et al.,
*Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun.***182**(2011) 842 [arXiv:1004.1092] [INSPIRE].ADSMATHGoogle Scholar - [86]A. Djouadi, J.-L. Kneur and G. Moultaka,
*SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun.***176**(2007) 426 [hep-ph/0211331] [INSPIRE].ADSMATHGoogle Scholar - [87]M. Muhlleitner, A. Djouadi and Y. Mambrini,
*Sdecay: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun.***168**(2005) 46 [hep-ph/0311167] [INSPIRE].ADSGoogle Scholar - [88]XENON100 collaboration, E. Aprile et al.,
*Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett.***107**(2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSGoogle Scholar - [89]XENON100 collaboration, E. Aprile et al.,
*Implications on inelastic dark matter from 100 live days of XENON100 data, Phys. Rev.***D 84**(2011) 061101 [arXiv:1104.3121] [INSPIRE].ADSGoogle Scholar - [90]XENON100 collaboration, E. Aprile et al.,
*The XENON100 dark matter experiment, Astropart. Phys.***35**(2012) 573 [arXiv:1107.2155] [INSPIRE].ADSGoogle Scholar - [91]C. Beskidt, W. de Boer, D. Kazakov and F. Ratnikov,
*Where is SUSY?, JHEP***05**(2012) 094 [arXiv:1202.3366] [INSPIRE].ADSGoogle Scholar - [92]ATLAS collaboration, G. Aad et al.,
*Combined search for the standard model Higgs boson using up to 4.9 fb*^{−1}*of pp collision data at*\( \sqrt {s} = 7\;TeV \)*with the ATLAS detector at the LHC, Phys. Lett.***B 710**(2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar - [93]ATLAS collaboration, G. Aad et al.,
*Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb*^{−1}*of pp collisions at*\( \sqrt {s} = 7\;TeV \)*with ATLAS, Phys. Rev. Lett.***108**(2012) 111803 [arXiv:1202.1414] [INSPIRE].ADSGoogle Scholar - [94]ATLAS collaboration, G. Aad et al.,
*Search for the standard model Higgs boson in the decay −1 channel H → Z Z → 4l with 4.8 fb of pp collision data at*\( \sqrt {s} = 7\;TeV \)*with ATLAS, Phys. Lett.***B 710**(2012) 383 [arXiv:1202.1415] [INSPIRE].ADSGoogle Scholar - [95]CMS collaboration, S. Chatrchyan et al.,
*Search for a Higgs boson in the decay channel H to Z Z*^{*}*to*\( q\overline q {l^{ - }}{l^{ + }} \)*in pp collisions at*\( \sqrt {s} = 7\;TeV \)*, JHEP***04**(2012) 036 [arXiv:1202.1416] [INSPIRE].ADSGoogle Scholar - [96]S. Chatrchyan et al.,
*Search for the standard model Higgs boson decaying into two photons in pp collisions at*\( \sqrt {s} = 7\;TeV \)*, Phys. Lett.***B 710**(2012) 403 [arXiv:1202.1487] [INSPIRE].ADSGoogle Scholar - [97]CMS collaboration,
*Combined results of searches for the standard model Higgs boson in pp collisions at*\( \sqrt {s} = 7\;TeV \), arXiv:1202.1488. - [98]S. Chatrchyan et al.,
*Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at*\( \sqrt {s} = 7\;TeV \), Phys. Lett.**B 710**(2012) 91 [arXiv:1202.1489] [INSPIRE].ADSGoogle Scholar - [99]CMS collaboration, S. Chatrchyan et al.,
*Search for the standard model Higgs boson in the decay channel H to Z Z to 4 leptons in pp collisions at*\( \sqrt {s} = 7\;TeV \), arXiv:1202.1997 [INSPIRE]. - [100]S. Heinemeyer, O. Stål and G. Weiglein,
*Interpreting the LHC Higgs search results in the MSSM, Physics Letters***B 710**(2012) 201 [arXiv:1112.3026].ADSGoogle Scholar - [101]A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon,
*Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett.***B 708**(2012) 162 [arXiv:1112.3028] [INSPIRE].ADSGoogle Scholar - [102]A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon,
*Implications of LHC searches for Higgs-portal dark matter, Phys. Lett.***B 709**(2012) 65 [arXiv:1112.3299] [INSPIRE].ADSGoogle Scholar - [103]O. Buchmueller, R. Cavanaugh, A. De Roeck, M.J. Dolan, J.R. Ellis, H. Flacher, S. Heinemeyer, G. Isidori, J. Marrouche, D. Martinez Santos, K.A. Olive, S. Rogerson, F.J. Ronga, K.J. de Vries and G. Weiglein,
*Higgs and supersymmetry*, arXiv:1112.3564. - [104]S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim,
*Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev.***D 85**(2012) 075001 [arXiv:1112.3645] [INSPIRE].ADSGoogle Scholar - [105]S. Heinemeyer,
*Implications of SUSY searches at the LHC for the ILC*, arXiv:1202.1991 [INSPIRE]. - [106]K.A. Olive,
*The impact of XENON100 and the LHC on supersymmetric dark matter*, arXiv:1202.2324 [INSPIRE]. - [107]J. Ellis and K.A. Olive,
*Revisiting the Higgs mass and dark matter in the CMSSM*, arXiv:1202.3262. - [108]A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, et al.,
*CompHEP: a package for evaluation of Feynman diagrams and integration over multiparticle phase space*, hep-ph/9908288 [INSPIRE]. - [109]T. Sjöstrand, P. Eden, C. Friberg, L. Lönnblad, G. Miu, et al.,
*High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun.*135 (2001) 238 [hep-ph/0010017] [INSPIRE].ADSMATHGoogle Scholar - [110]T. Sjöstrand, S. Mrenna and P.Z. Skands,
*PYTHIA 6.4 physics and manual, JHEP***05**(2006) 026 [hep-ph/0603175] [INSPIRE].ADSGoogle Scholar - [111]CTEQ collaboration, H. Lai et al.,
*Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J.***C 12**(2000) 375 [hep-ph/9903282] [INSPIRE].ADSGoogle Scholar - [112]P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, et al.,
*Implications of CTEQ global analysis for collider observables, Phys. Rev.***D 78**(2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar - [113]R.J. Scalise,
*The coordinated theoretical-experimental project on QCD*, http://www.phys.psu.edu/cteq. - [114]M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa,
*ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP***07**(2003) 001 [hep-ph/0206293] [INSPIRE].ADSGoogle Scholar - [115]W. Beenakker, R. Hoepker and M. Spira,
*PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD*, arXiv:hep-ph/9611232.Google Scholar - [116]M. Drees and C.-L. Shan,
*Reconstructing the velocity distribution of WIMPs from direct dark matter detection data, JCAP***06**(2007) 011 [astro-ph/0703651] [INSPIRE].ADSGoogle Scholar - [117]O. Mena, S. Palomares-Ruiz and S. Pascoli,
*Reconstructing WIMP properties with neutrino detectors, Phys. Lett.***B 664**(2008) 92 [arXiv:0706.3909] [INSPIRE].ADSGoogle Scholar - [118]A.M. Green,
*Determining the WIMP mass from a single direct detection experiment, a more detailed study, JCAP***07**(2008) 005 [arXiv:0805.1704] [INSPIRE].ADSGoogle Scholar - [119]
- [120]J. Billard, F. Mayet and D. Santos,
*Markov chain Monte Carlo analysis to constrain dark matter properties with directional detection, Phys. Rev.***D 83**(2011) 075002 [arXiv:1012.3960] [INSPIRE].ADSGoogle Scholar - [121]S. Choi, S. Scopel, N. Fornengo and A. Bottino,
*Search at the CERN LHC for a light neutralino of cosmological interest, Phys. Rev.***D 85**(2012) 035009 [arXiv:1108.2190] [INSPIRE].ADSGoogle Scholar