Advertisement

Generalized quark-antiquark potential at weak and strong coupling

  • Nadav Drukker
  • Valentina Forini
Article

Abstract

We study a two-parameter family of Wilson loop operators in \( \mathcal{N} = 4 \) super-symmetric Yang-Mills theory which interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines. These observables capture a natural generalization of the quark-antiquark potential. We calculate these loops on the gauge theory side to second order in perturbation theory and in a semiclassical expansion in string theory to one-loop order. The resulting determinants are given in integral form and can be evaluated numerically for general values of the parameters or analytically in a systematic expansion around the 1/2 BPS configuration. We comment about the feasibility of deriving all-loop results for these Wilson loops.

Keywords

AdS-CFT Correspondence Supersymmetric gauge theory 

References

  1. [1]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    J.K. Erickson, G.W. Semenoff, R.J. Szabo and K. Zarembo, Static potential in \( \mathcal{N} = 4 \) supersymmetric Yang-Mills theory, Phys. Rev. D 61 (2000) 105006 [hep-th/9911088] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in \( \mathcal{N} = 4 \) supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Pineda, The static potential in \( \mathcal{N} = 4 \) supersymmetric Yang-Mills at weak coupling, Phys. Rev. D 77 (2008) 021701 [arXiv:0709.2876] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    S. Förste, D. Ghoshal and S. Theisen, Stringy corrections to the Wilson loop in \( \mathcal{N} = 4 \) super Yang-Mills theory, JHEP 08 (1999) 013 [hep-th/9903042] [SPIRES].CrossRefGoogle Scholar
  8. [8]
    N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5 : Semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S.-x. Chu, D. Hou and H.-c. Ren, The subleading term of the strong coupling expansion of the heavy-quark potential in a \( \mathcal{N} = 4 \) super Yang-Mills vacuum, JHEP 08 (2009) 004 [arXiv:0905.1874] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    V. Forini, Quark-antiquark potential in AdS at one loop, JHEP 11 (2010) 079 [arXiv:1009.3939] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    N. Drukker and D.J. Gross, An exact prediction of \( \mathcal{N} = 4 \) SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].
  13. [13]
    K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [SPIRES].ADSGoogle Scholar
  14. [14]
    Y. Makeenko, P. Olesen and G.W. Semenoff, Cusped SYM Wilson loop at two loops and beyond, Nucl. Phys. B 748 (2006) 170 [hep-th/0602100] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    V. Branding and N. Drukker, BPS Wilson loops in \( \mathcal{N} = 4 \) SYM: Examples on hyperbolic submanifolds of space-time, Phys. Rev. D 79 (2009) 106006 [arXiv:0902.4586] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    R.A. Brandt, F. Neri and M. Sato, Renormalization of loop functions for all loops, Phys. Rev. D 24 (1981) 879 [SPIRES].ADSGoogle Scholar
  19. [19]
    R.A. Brandt, A. Gocksch, M. Sato and F. Neri, Loop space, Phys. Rev. D 26 (1982) 3611 [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    A. Bassetto, L. Griguolo, F. Pucci and D. Seminara, Supersymmetric Wilson loops at two loops, JHEP 06 (2008) 083 [arXiv:0804.3973] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    D. Young, BPS Wilson loops on S 2 at higher loops, JHEP 05 (2008) 077 [arXiv:0804.4098] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov evolution kernels of parton distributions, Mod. Phys. Lett. A4 (1989) 1257 [SPIRES].ADSGoogle Scholar
  25. [25]
    J.C. Collins, Sudakov form factors, Adv. Ser. Direct. High Energy Phys. 5 (1989) 573 [hep-ph/0312336] [SPIRES].Google Scholar
  26. [26]
    K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    A.V. Kotikov, L.N. Lipatov and V.N. Velizhanin, Anomalous dimensions of Wilson operators in \( \mathcal{N} = 4 \) SYM theory, Phys. Lett. B 557 (2003) 114 [hep-ph/0301021] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    T. Appelquist, M. Dine and I.J. Muzinich, The static limit of quantum chromodynamics, Phys. Rev. D 17 (1978) 2074 [SPIRES].ADSGoogle Scholar
  29. [29]
    N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    J. Polchinski and J. Sully, Wilson loop renormalization group flows, arXiv:1104.5077 [SPIRES].
  32. [32]
    A.A. Tseytlin and K. Zarembo, Wilson loops in \( \mathcal{N} = 4 \) SYM theory: Rotation in S 5, Phys. Rev. D 66 (2002) 125010 [hep-th/0207241] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    N. Drukker and B. Fiol, On the integrability of Wilson loops in AdS 5 × S 5 : Some periodic ansatze, JHEP 01 (2006) 056 [hep-th/0506058] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    R. Ishizeki, M. Kruczenski and S. Ziama, Notes on Euclidean Wilson loops and Riemann Theta functions, arXiv:1104.3567 [SPIRES].
  35. [35]
    A.I. Davydychev, Recursive algorithm of evaluating vertex type Feynman integrals, J. Phys. A 25 (1992) 5587 [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS 5 × S 5, JHEP 06 (2002) 007 [hep-th/0204226] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    P.B. Gilkey, The spectral geometry of a Riemannian manifold, J. Diff. Geom. 10 (1975) 601 [SPIRES].MathSciNetMATHGoogle Scholar
  39. [39]
    A.S. Schwarz and A.A. Tseytlin, Dilaton shift under duality and torsion of elliptic complex, Nucl. Phys. B 399 (1993) 691 [hep-th/9210015] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    M. Beccaria, G.V. Dunne, V. Forini, M. Pawellek and A.A. Tseytlin, Exact computation of one-loop correction to energy of spinning folded string in AdS 5 × S 5, J. Phys. A 43 (2010) 165402 [arXiv:1001.4018] [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    F. Langouche and H. Leutwyler, Anomalies generated by extrinsic curvature, Z. Phys. C 36 (1987) 479 [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    F. Langouche and H. Leutwyler, Two-dimensional fermion determinants as Wess-Zumino actions, Phys. Lett. B 195 (1987) 56 [SPIRES].MathSciNetADSGoogle Scholar
  43. [43]
    P.B. Wiegmann, Extrinsic geometry of superstrings, Nucl. Phys. B 323 (1989) 330 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    K. Lechner and M. Tonin, The cancellation of worldsheet anomalies in the D = 10 Green-Schwarz heterotic string sigma model, Nucl. Phys. B 475 (1996) 535 [hep-th/9603093] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    E.T. Whittaker and G.N. Watson, A course of modern analysis, Cambridge University Press, Cambridge U.K. (1927).MATHGoogle Scholar
  46. [46]
    P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, Springer-Verlag, (1971).Google Scholar
  47. [47]
    H.W. Braden, Periodic functional determinants, J. Phys. A 18 (1985) 2127. MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.The Blackett LaboratoryImperial College LondonLondonU.K.
  2. 2.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutPotsdamGermany

Personalised recommendations