Anomaly mediation and cosmology



We consider an extension of the MSSM wherein anomaly mediation is the source of supersymmetry-breaking, and thetachyonic slepton problem is solved by a gauged U(1) symmetry, which is broken at high energies in a manner preserving supersymmetry, thereby also facilitating the see-saw mechanism for neutrino masses and a natural source for the Higgs μ-term. We show that these favourable outcomes can occur both in the presence and the absence of a large Fayet-Iliopoulos (FI) D-term associated with the new U(1). We explore the cosmological consequences of the model, showing that it naturally produces a period of hybrid inflation, terminating in the production of cosmic strings. In spite of the presence of a U(1) (even with an FI term), inflation is effected by the F-term, with a D-flat tree potential (the FI term, if present, being cancelled by non-zero squark and slepton fields). Calculating the 1-loop corrections to the inflaton potential, we estimate the constraints on the parameters of the model from Cosmic Microwave Background data. We will see that a consequence of these constraints is that the Higgs μ-term necessarily small. We briefly discuss the mechanisms for baryogenesis via conventional leptogenesis, the out-of-equilibrium production of neutrinos from the cosmic strings, or the Affleck-Dine mechanism. Cosmic string decays also boost the relic density of dark matter above the low value normally obtained in AMSB scenarios.


Supersymmetric gauge theory Supersymmetry Breaking Cosmology of Theories beyond the SM 


  1. [1]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino Mass without Singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    A. Pomarol and R. Rattazzi, Sparticle masses from the superconformal anomaly, JHEP 05 (1999) 013 [hep-ph/9903448] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    I. Jack and D.R.T. Jones, Fayet-Iliopoulos D-terms and anomaly mediated supersymmetry breaking, Phys. Lett. B 482 (2000) 167 [hep-ph/0003081] [SPIRES].ADSGoogle Scholar
  5. [5]
    N. Arkani-Hamed, D.E. Kaplan, H. Murayama and Y. Nomura, Viable ultraviolet-insensitive supersymmetry breaking, JHEP 02 (2001) 041 [hep-ph/0012103] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    R. Harnik, H. Murayama and A. Pierce, Purely four-dimensional viable anomaly mediation, JHEP 08 (2002) 034 [hep-ph/0204122] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    B. Murakami and J.D. Wells, Abelian D-terms and the superpartner spectrum of anomaly-mediated supersymmetry breaking, Phys. Rev. D 68 (2003) 035006 [hep-ph/0302209] [SPIRES].ADSGoogle Scholar
  8. [8]
    R. Kitano, G.D. Kribs and H. Murayama, Electroweak symmetry breaking via UV insensitive anomaly mediation, Phys. Rev. D 70 (2004) 035001 [hep-ph/0402215] [SPIRES].ADSGoogle Scholar
  9. [9]
    M. Ibe, R. Kitano and H. Murayama, A viable supersymmetric model with UV insensitive anomaly mediation, Phys. Rev. D 71 (2005) 075003 [hep-ph/0412200] [SPIRES].ADSGoogle Scholar
  10. [10]
    I. Jack, D.R.T. Jones and R. Wild, Fayet-Iliopoulos D-terms, neutrino masses and anomaly mediated supersymmetry breaking, Phys. Lett. B 535 (2002) 193 [hep-ph/0202101] [SPIRES].ADSGoogle Scholar
  11. [11]
    R. Hodgson, I. Jack, D.R.T. Jones and G.G. Ross, Anomaly mediation, Fayet-Iliopoulos D-terms and precision sparticle spectra, Nucl. Phys. B 728 (2005) 192 [hep-ph/0507193] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    D.R.T. Jones and G.G. Ross, Anomaly mediation and dimensional transmutation, Phys. Lett. B 642 (2006) 540 [hep-ph/0609210] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    E. Witten, Mass Hierarchies in Supersymmetric Theories, Phys. Lett. B 105 (1981) 267 [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    R. Battye, B. Garbrecht and A. Moss, Tight constraints on F- and D-term hybrid inflation scenarios, Phys. Rev. D 81 (2010) 123512 [arXiv:1001.0769] [SPIRES].ADSGoogle Scholar
  15. [15]
    B. Garbrecht and A. Pilaftsis, F(D)-term hybrid inflation with electroweak-scale lepton number violation, Phys. Lett. B 636 (2006) 154 [hep-ph/0601080] [SPIRES].ADSGoogle Scholar
  16. [16]
    B. Garbrecht, C. Pallis and A. Pilaftsis, Anatomy of F D -Term Hybrid Inflation, JHEP 12 (2006) 038 [hep-ph/0605264] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos Term in Field Theory and Supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    K.R. Dienes and B. Thomas, On the Inconsistency of Fayet-Iliopoulos Terms in Supergravity Theories, Phys. Rev. D 81 (2010) 065023 [arXiv:0911.0677] [SPIRES].ADSGoogle Scholar
  19. [19]
    Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    J. Distler and E. Sharpe, Quantization of Fayet-Iliopoulos Parameters in Supergravity, Phys. Rev. D 83 (2011) 085010 [arXiv:1008.0419] [SPIRES].ADSGoogle Scholar
  21. [21]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [SPIRES].ADSGoogle Scholar
  22. [22]
    B.C. Allanach, G. Hiller, D.R.T. Jones and P. Slavich, Flavour Violation in Anomaly Mediated Supersymmetry Breaking, JHEP 04 (2009) 088 [arXiv:0902.4880] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    S. Weinberg, Supersymmetry at Ordinary Energies. 1. Masses and Conservation Laws, Phys. Rev. D 26 (1982) 287 [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Dimopoulos, S. Raby and F. Wilczek, Proton Decay in Supersymmetric Models, Phys. Lett. B 112 (1982) 133 [SPIRES].ADSGoogle Scholar
  25. [25]
    N. Sakai and T. Yanagida, Proton Decay in a Class of Supersymmetric Grand Unified Models, Nucl. Phys. B 197 (1982) 533 [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    I. Jack, D.R.T. Jones and R. Wild, Gauge singlet renormalisation in softly-broken supersymmetric theories, Phys. Lett. B 509 (2001) 131 [hep-ph/0103255] [SPIRES].ADSGoogle Scholar
  27. [27]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011] [SPIRES].ADSGoogle Scholar
  29. [29]
    G.R. Dvali, Q. Shafi and R.K. Schaefer, Large scale structure and supersymmetric inflation without fine tuning, Phys. Rev. Lett. 73 (1994) 1886 [hep-ph/9406319] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    P. Binetruy and G.R. Dvali, D-term inflation, Phys. Lett. B 388 (1996) 241 [hep-ph/9606342] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    D.H. Lyth and A.R. Liddle, The primordial density perturbation: Cosmology, inflation and the origin of structure, Cambridge University Press, Cambridge U.K. (2009).MATHGoogle Scholar
  33. [33]
    WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    D. Larson et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    R.A. Battye, B. Garbrecht and A. Moss, Constraints on supersymmetric models of hybrid inflation, JCAP 09 (2006) 007 [astro-ph/0607339] [SPIRES].ADSGoogle Scholar
  36. [36]
    N. Bevis, M. Hindmarsh, M. Kunz and J. Urrestilla, Fitting CMB data with cosmic strings and inflation, Phys. Rev. Lett. 100 (2008) 021301 [astro-ph/0702223] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    M.B. Hindmarsh and T.W.B. Kibble, Cosmic strings, Rept. Prog. Phys. 58 (1995) 477 [hep-ph/9411342] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A. Vilenkin and E.P.S. Shellard, Cosmic Strings and Other Defects, Cambridge University Press, Cambridge U.K. (1994).MATHGoogle Scholar
  39. [39]
    L. Pogosian and T. Vachaspati, Cosmic microwave background anisotropy from wiggly strings, Phys. Rev. D 60 (1999) 083504 [astro-ph/9903361] [SPIRES].ADSGoogle Scholar
  40. [40]
    R. Battye and A. Moss, Updated constraints on the cosmic string tension, Phys. Rev. D 82 (2010) 023521 [arXiv:1005.0479] [SPIRES].ADSGoogle Scholar
  41. [41]
    C.T. Hill, H.M. Hodges and M.S. Turner, Bosonic Superconducting Cosmic Strings, Phys. Rev. D 37 (1988) 263 [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    R. Jeannerot and M. Postma, Enlarging the parameter space of standard hybrid inflation, JCAP 07 (2006) 012 [hep-th/0604216] [SPIRES].ADSGoogle Scholar
  43. [43]
    C. Ringeval, M. Sakellariadou and F. Bouchet, Cosmological evolution of cosmic string loops, JCAP 02 (2007) 023 [astro-ph/0511646] [SPIRES].ADSGoogle Scholar
  44. [44]
    J.N. Moore, E.P.S. Shellard and C.J.A.P. Martins, On the evolution of Abelian-Higgs string networks, Phys. Rev. D 65 (2002) 023503 [hep-ph/0107171] [SPIRES].ADSGoogle Scholar
  45. [45]
    M. Hindmarsh, S. Stuckey and N. Bevis, Abelian Higgs Cosmic Strings: Small Scale Structure and Loops, Phys. Rev. D 79 (2009) 123504 [arXiv:0812.1929] [SPIRES].ADSGoogle Scholar
  46. [46]
    X. Siemens, V. Mandic and J. Creighton, Gravitational wave stochastic background from cosmic (super)strings, Phys. Rev. Lett. 98 (2007) 111101 [astro-ph/0610920] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    G. Vincent, N.D. Antunes and M. Hindmarsh, Numerical simulations of string networks in the Abelian-Higgs model, Phys. Rev. Lett. 80 (1998) 2277 [hep-ph/9708427] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    P. Bhattacharjee and G. Sigl, Origin and propagation of extremely high energy cosmic rays, Phys. Rept. 327 (2000) 109 [astro-ph/9811011] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    R.J. Protheroe and T. Stanev, Limits on models of the ultrahigh energy cosmic rays based on topological defects, Phys. Rev. Lett. 77 (1996) 3708 [astro-ph/9605036] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    P. Bhattacharjee, Q. Shafi and F.W. Stecker, TeV and superheavy mass-scale particles from supersymmetric topological defects, the extragalactic gamma-ray background and the highest energy cosmic rays, Phys. Rev. Lett. 80 (1998) 3698 [hep-ph/9710533] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    G. Sigl, S. Lee, P. Bhattacharjee and S. Yoshida, Probing grand unified theories with cosmic ray, gamma-ray and neutrino astrophysics, Phys. Rev. D 59 (1999) 043504 [hep-ph/9809242] [SPIRES].ADSGoogle Scholar
  52. [52]
    U.F. Wichoski, J.H. MacGibbon and R.H. Brandenberger, High energy neutrinos, photons and cosmic rays from non-scaling cosmic strings, Phys. Rev. D 65 (2002) 063005 [hep-ph/9805419] [SPIRES].ADSGoogle Scholar
  53. [53]
    J. Ellis and K.A. Olive, Supersymmetric Dark Matter Candidates, arXiv:1001.3651 [SPIRES].
  54. [54]
    T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly-induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly-mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    H. Baer, R. Dermisek, S. Rajagopalan and H. Summy, Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB, JCAP 07 (2010) 014 [arXiv:1004.3297] [SPIRES].ADSGoogle Scholar
  57. [57]
    S.S. AbdusSalam, B.C. Allanach, M.J. Dolan, F. Feroz and M.P. Hobson, Selecting a Model of Supersymmetry Breaking Mediation, Phys. Rev. D 80 (2009) 035017 [arXiv:0906.0957] [SPIRES].ADSGoogle Scholar
  58. [58]
    R. Jeannerot, X. Zhang and R.H. Brandenberger, Non-thermal production of neutralino cold dark matter from cosmic string decays, JHEP 12 (1999) 003 [hep-ph/9901357] [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    Y. Cui and D.E. Morrissey, Non-Thermal Dark Matter from Cosmic Strings, Phys. Rev. D 79 (2009) 083532 [arXiv:0805.1060] [SPIRES].ADSGoogle Scholar
  60. [60]
    X.-J. Bi et al., Non-Thermal Production of WIMPs, Cosmic e ± Excesses and γ-rays from the Galactic Center, Phys. Rev. D 80 (2009) 103502 [arXiv:0905.1253] [SPIRES].ADSGoogle Scholar
  61. [61]
    A.D. Sakharov, Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [SPIRES].Google Scholar
  62. [62]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [SPIRES].ADSGoogle Scholar
  63. [63]
    M. Ibe, R. Kitano, H. Murayama and T. Yanagida, Viable supersymmetry and leptogenesis with anomaly mediation, Phys. Rev. D 70 (2004) 075012 [hep-ph/0403198] [SPIRES].ADSGoogle Scholar
  64. [64]
    G.F. Giudice, L. Mether, A. Riotto and F. Riva, Supersymmetric Leptogenesis and the Gravitino Bound, Phys. Lett. B 664 (2008) 21 [arXiv:0804.0166] [SPIRES].ADSGoogle Scholar
  65. [65]
    R. Jeannerot, A new mechanism for leptogenesis, Phys. Rev. Lett. 77 (1996) 3292 [hep-ph/9609442] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    R. Jeannerot and M. Postma, Leptogenesis from reheating after inflation and cosmic string decay, JCAP 12 (2005) 006 [hep-ph/0507162] [SPIRES].ADSGoogle Scholar
  67. [67]
    N. Sahu, P. Bhattacharjee and U.A. Yajnik, Baryogenesis via leptogenesis in presence of cosmic strings, Nucl. Phys. B 752 (2006) 280 [hep-ph/0512350] [SPIRES].ADSCrossRefGoogle Scholar
  68. [68]
    I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249 (1985) 361 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    S.C. Davis, A.-C. Davis and M. Trodden, N = 1 supersymmetric cosmic strings, Phys. Lett. B 405 (1997) 257 [hep-ph/9702360] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of SussexBrightonU.K.
  2. 2.Dept. of Mathematical SciencesUniversity of LiverpoolLiverpoolU.K.

Personalised recommendations