Advertisement

Rigid supersymmetric theories in curved superspace

  • Guido Festuccia
  • Nathan Seiberg
Article

Abstract

We present a uniform treatment of rigid supersymmetric field theories in a curved spacetime \( \mathcal{M} \), focusing on four-dimensional theories with four supercharges. Our discussion is significantly simpler than earlier treatments, because we use classical background values of the auxiliary fields in the supergravity multiplet. We demonstrate our procedure using several examples. For \( \mathcal{M} = Ad{S_4} \) we reproduce the known results in the literature. A supersymmetric Lagrangian for \( \mathcal{M} = {\mathbb{S}^4} \) exists, but unless the field theory is conformal, it is not reflection positive. We derive the Lagrangian for \( \mathcal{M} = {\mathbb{S}^3} \times \mathbb{R} \) and note that the time direction \( \mathbb{R} \) can be rotated to Euclidean signature and be compactified to \( {\mathbb{S}^1} \) only when the theory has a continuous R-symmetry. The partition function on \( \mathcal{M} = {\mathbb{S}^3} \times {\mathbb{S}^1} \) is independent of the parameters of the flat space theory and depends holomorphically on some complex background gauge fields. We also consider R-invariant \( \mathcal{N} = 2 \) theories on \( {\mathbb{S}^3} \) and clarify a few points about them.

Keywords

Supergravity Models Superspaces 

References

  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].
  2. [2]
    V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, arXiv:0906.0638 [SPIRES].
  3. [3]
    T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2* super Yang-Mills on S 4, arXiv:1004.1222 [SPIRES].
  4. [4]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional Dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like Duality in Three Dimensions, arXiv:1012.4021 [SPIRES].
  6. [6]
    A. Kapustin, Seiberg-like duality in three dimensions for orthogonal gauge groups, arXiv:1104.0466 [SPIRES].
  7. [7]
    B. Willett and I. Yaakov, N = 2 Dualities and Z Extremization in Three Dimensions, arXiv:1104.0487 [SPIRES].
  8. [8]
    N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    S. Cheon, H. Kim and N. Kim, Calculating the partition function of N = 2 Gauge theories on S 3 and AdS/CFT correspondence, JHEP 05 (2011) 134 [arXiv:1102.5565] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, arXiv:1102.5289 [SPIRES].
  12. [12]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, arXiv:1103.4844 [SPIRES].
  13. [13]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [SPIRES].ADSGoogle Scholar
  14. [14]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, arXiv:1104.0783 [SPIRES].
  15. [15]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, arXiv:1012.3210 [SPIRES].
  16. [16]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, arXiv:1103.1181 [SPIRES].
  17. [17]
    A. Amariti, On the exact R charge for N = 2 CS theories, arXiv:1103.1618 [SPIRES].
  18. [18]
    S. Cheon, D. Gang, S. Kim and J. Park, Refined test of AdS4/CFT3 correspondence for N = 2, 3 theories, JHEP 05 (2011) 027 [arXiv:1102.4273] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    V. Niarchos, Comments on F-maximization and R-symmetry in 3D SCFTs, arXiv:1103.5909 [SPIRES].
  20. [20]
    S. Minwalla, P. Narayan, T. Sharma, V. Umesh and X. Yin, Supersymmetric States in Large-N Chern-Simons-Matter Theories, arXiv:1104.0680 [SPIRES].
  21. [21]
    D. Sen, Supersymmetry In The Space-time R × S 3, Nucl. Phys. B 284 (1987) 201 [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    D. Sen, Extended Supersymmetry In The Space-time R × S 3, Phys. Rev. D 41 (1990) 667 [SPIRES].ADSGoogle Scholar
  23. [23]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    C. Romelsberger, Calculating the Superconformal Index and Seiberg Duality, arXiv:0707.3702 [SPIRES].
  25. [25]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. [26]
    F.A. Dolan and H. Osborn, Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N = 1 Dual Theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    V.P. Spiridonov and G.S. Vartanov, Superconformal indices for \( \mathcal{N} = 1 \) theories with multiple duals, Nucl. Phys. B 824 (2010) 192 [arXiv:0811.1909] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometry of supersymmetric dualities, Commun. Math. Phys. 304 (2011) 797 [arXiv:0910.5944] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. [29]
    A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d Topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The Superconformal Index of the E 6 SCFT, JHEP 08 (2010) 107 [arXiv:1003.4244] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, On the Superconformal Index of N = 1 IR Fixed Points: A Holographic Check, JHEP 03 (2011) 041 [arXiv:1011.5278] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    V.P. Spiridonov and G.S. Vartanov, Supersymmetric dualities beyond the conformal window, Phys. Rev. Lett. 105 (2010) 061603 [arXiv:1003.6109] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    G.S. Vartanov, On the ISS model of dynamical SUSY breaking, Phys. Lett. B 696 (2011) 288 [arXiv:1009.2153] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    F.A.H. Dolan, V.P. Spiridonov and G.S. Vartanov, From 4d superconformal indices to 3d partition functions, arXiv:1104.1787 [SPIRES].
  35. [35]
    N. Seiberg, Naturalness Versus Supersymmetric Non-renormalization Theorems, Phys. Lett. B 318 (1993) 469 [hep-ph/9309335] [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    M.F. Sohnius and P.C. West, An Alternative Minimal Off-Shell Version of N = 1 Supergravity, Phys. Lett. B 105 (1981) 353 [SPIRES].ADSGoogle Scholar
  37. [37]
    K.S. Stelle and P.C. West, Minimal Auxiliary Fields for Supergravity, Phys. Lett. B 74 (1978) 330 [SPIRES].ADSGoogle Scholar
  38. [38]
    S. Ferrara and P. van Nieuwenhuizen, The Auxiliary Fields of Supergravity, Phys. Lett. B 74 (1978) 333 [SPIRES].ADSGoogle Scholar
  39. [39]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B 212 (1983) 413 [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).Google Scholar
  41. [41]
    S. Ferrara and B. Zumino, Transformation Properties of the Supercurrent, Nucl. Phys. B 87 (1975) 207 [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace, or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [SPIRES].Google Scholar
  43. [43]
    Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    T. Dumitrescu and N. Seiberg, Supercurrents and Brane Currents in Diverse Dimensions, arXiv:1106.0031 [SPIRES].
  45. [45]
    Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos Term in Field Theory and Supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    G. Festuccia, M. Rocek and N. Seiberg, A Taxonomy of Supersymmetric Backgrounds, to appear.Google Scholar
  47. [47]
    B.W. Keck, An Alternative Class of Supersymmetries, J. Phys. A 8 (1975) 1819 [SPIRES].MathSciNetADSGoogle Scholar
  48. [48]
    B. Zumino, Nonlinear Realization of Supersymmetry in de Sitter Space, Nucl. Phys. B 127 (1977) 189 [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    E.A. Ivanov and A.S. Sorin, Wess-Zumino Model as Linear σ-Model of Spontaneously Broken Conformal and OSp(1, 4) Supersymmetries, Sov. J. Nucl. Phys. 30 (1979) 440 [SPIRES].MathSciNetGoogle Scholar
  50. [50]
    E.A. Ivanov and A.S. Sorin, Superfield Formulation Of OSp(1, 4) Supersymmetry, J. Phys. A 13 (1980) 1159 [SPIRES].MathSciNetADSGoogle Scholar
  51. [51]
    A. Adams, H. Jockers, V. Kumar and J.M. Lapan, N = 1 σ-models in AdS 4, arXiv:1104.3155 [SPIRES].
  52. [52]
    I.A. Bandos, E. Ivanov, J. Lukierski and D. Sorokin, On the superconformal flatness of AdS superspaces, JHEP 06 (2002) 040 [hep-th/0205104] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in anti-de Sitter space, JHEP 02 (2011) 041 [arXiv:1011.6144] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino Mass without Singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    M. Dine and N. Seiberg, Comments on Quantum Effects in Supergravity Theories, JHEP 03 (2007) 040 [hep-th/0701023] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    B. Gripaios, H.D. Kim, R. Rattazzi, M. Redi and C. Scrucca, Gaugino mass in AdS space, JHEP 02 (2009) 043 [arXiv:0811.4504] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    D. Butter and S.M. Kuzenko, N = 2 AdS supergravity and supercurrents, arXiv:1104.2153 [SPIRES].
  59. [59]
    O. Aharony and N. Seiberg, unpublished.Google Scholar
  60. [60]
    M. Sohnius and P.C. West, The Tensor Calculus And Matter Coupling Of The Alternative Minimal Auxiliary Field Formulation Of N = 1 Supergravity, Nucl. Phys. B 198 (1982) 493 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    A. Gadde and W. Yan, Reducing the 4d Index to the \( {\mathbb{S}^3} \) Partition Function, arXiv:1104.2592 [SPIRES].
  62. [62]
    Y. Imamura, Relation between the 4d superconformal index and the S 3 partition function, arXiv:1104.4482 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations