On the exact R charge for \( \mathcal{N} = 2 \) CS theories

  • Antonio Amariti


Recently it was argued that the exact R charge for three dimensional \( \mathcal{N} = 2 \) supersymmetric field theories extremizes the partition function localized on S 3. In this paper we check this conjecture by computing the R charge for SU(N) k YM CS gauge theories at large k for many representations, and we test the agreement with the perturbative results.


Supersymmetric gauge theory Chern-Simons Theories Matrix Models 


  1. [1]
    K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    D. Anselmi, J. Erlich, D.Z. Freedman and A.A. Johansen, Positivity constraints on anomalies in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570 [hep-th/9711035] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    E. Barnes, E. Gorbatov, K.A. Intriligator, M. Sudano and J. Wright, The exact superconformal R-symmetry minimizes tau(RR), Nucl. Phys. B 730 (2005) 210 [hep-th/0507137] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, arXiv:1012.3210 [SPIRES].
  7. [7]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].
  8. [8]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, arXiv:1007.3837 [SPIRES].
  9. [9]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [SPIRES].ADSGoogle Scholar
  10. [10]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    J. Bagger and N. Lambert, Gauge Symmetry and Supersymmetry of Multiple M2-Branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    J. Bagger and N. Lambert, Comments On Multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, arXiv:1102.5289 [SPIRES].
  17. [17]
    S. Cheon, H. Kim and N. Kim, Calculating the partition function of N = 2 Gauge theories on S 3 and AdS/CFT correspondence, JHEP 05 (2011) 134 [arXiv:1102.5565] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, arXiv:1103.1181 [SPIRES].
  19. [19]
    D. Martelli, J. Sparks and S.-T. Yau, The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds, Commun. Math. Phys. 268 (2006) 39 [hep-th/0503183] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  20. [20]
    D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys. 280 (2008) 611 [hep-th/0603021] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    J.P. Gauntlett, D. Martelli, J. Sparks and S.-T. Yau, Obstructions to the existence of Sasaki-Einstein metrics, Commun. Math. Phys. 273 (2007) 803 [hep-th/0607080] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  22. [22]
    A. Butti and A. Zaffaroni, R-charges from toric diagrams and the equivalence of a-maximization and Z-minimization, JHEP 11 (2005) 019 [hep-th/0506232] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    N.A. Nekrasov, Seiberg-Witten Prepotential From Instanton Counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].MathSciNetGoogle Scholar
  24. [24]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M. Mariño, Chern-Simons theory, matrix integrals and perturbative three-manifold invariants, Commun. Math. Phys. 253 (2004) 25 [hep-th/0207096] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP 02 (2004) 010 [hep-th/0211098] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    M.L. Mehta, Random matrices, 2nd edition, Academic Press (1991).Google Scholar
  29. [29]
    D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and AdS 4 /CFT 3, Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    A. Hanany and A. Zaffaroni, Tilings, Chern-Simons Theories and M2 Branes, JHEP 10 (2008) 111 [arXiv:0808.1244] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    K. Ueda and M. Yamazaki, Toric Calabi-Yau four-folds dual to Chern-Simons-matter theories, JHEP 12 (2008) 045 [arXiv:0808.3768] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Hanany, D. Vegh and A. Zaffaroni, Brane Tilings and M2 Branes, JHEP 03 (2009) 012 [arXiv:0809.1440] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Franco, A. Hanany, J. Park and D. Rodriguez-Gomez, Towards M2-brane Theories for Generic Toric Singularities, JHEP 12 (2008) 110 [arXiv:0809.3237] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    A. Hanany and Y.-H. He, M2-Branes and Quiver Chern-Simons: A Taxonomic Study, arXiv:0811.4044 [SPIRES].
  35. [35]
    M. Aganagic, A Stringy Origin of M2 Brane Chern-Simons Theories, Nucl. Phys. B 835 (2010) 1 [arXiv:0905.3415] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    D.L. Jafferis, Quantum corrections to N = 2 Chern-Simons theories with flavor and their AdS4 duals, arXiv:0911.4324 [SPIRES].
  37. [37]
    F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    V. Niarchos, Seiberg Duality in Chern-Simons Theories with Fundamental and Adjoint Matter, JHEP 11 (2008) 001 [arXiv:0808.2771] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    A. Amariti, D. Forcella, L. Girardello and A. Mariotti, 3D Seiberg-like Dualities and M2 Branes, JHEP 05 (2010) 025 [arXiv:0903.3222] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    S. Franco, I.R. Klebanov and D. Rodriguez-Gomez, M2-branes on Orbifolds of the Cone over Q 1,1,1, JHEP 08 (2009) 033 [arXiv:0903.3231] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    J. Davey, A. Hanany, N. Mekareeya and G. Torri, Phases of M2-brane Theories, JHEP 06 (2009) 025 [arXiv:0903.3234] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    K. Jensen and A. Karch, ABJM Mirrors and a Duality of Dualities, JHEP 09 (2009) 004 [arXiv:0906.3013] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    J. Davey, A. Hanany, N. Mekareeya and G. Torri, Brane Tilings, M2-branes and Chern-Simons Theories, arXiv:0910.4962 [SPIRES].
  46. [46]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional Dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [SPIRES].MathSciNetADSGoogle Scholar
  48. [48]
    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    D. Kutasov, New results on the ’a-theorem’ in four dimensional supersymmetric field theory, hep-th/0312098 [SPIRES].
  50. [50]
    E. Barnes, K.A. Intriligator, B. Wecht and J. Wright, Evidence for the strongest version of the 4d a-theorem, via a-maximization along RG flows, Nucl. Phys. B 702 (2004) 131 [hep-th/0408156] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of California San DiegoLa JollaU.S.A.

Personalised recommendations