UV friendly T-parity in the SU(6)/Sp(6) little Higgs model

  • Tom Brown
  • Claudia Frugiuele
  • Thomas Grégoire


Electroweak precision tests put stringent constraints on the parameter space of little Higgs models. Tree-level exchange of TeV scale particles in a generic little Higgs model produce higher dimensional operators that make contributions to electroweak observables that are typically too large. To avoid this problem a discrete symmetry dubbed T-parity can be introduced to forbid the dangerous couplings. However, it was realized that in simple group models such as the littlest Higgs model, the implementation of T-parity in a UV completion could present some challenges. The situation is analogous to the one in QCD where the pion can easily be defined as being odd under a new Z 2 symmetry in the chiral Lagrangian, but this Z 2 is not a symmetry of the quark Lagrangian. In this paper we examine the possibility of implementing a T-parity in the low energy SU(6)/Sp(6) model that might be easier to realize in the UV. In our model, the T-parity acts on the low energy non-linear sigma model field in way which is different to what was originally proposed for the Littlest Higgs, and lead to a different low energy theory. In particular, the Higgs sector of this model is a inert two Higgs doublets model with an approximate custodial symmetry. We examine the contributions of the various sectors of the model to electroweak precision data, and to the dark matter abundance.


Beyond Standard Model Higgs Physics Technicolor and Composite Models 


  1. [1]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    N. Arkani-Hamed, A.G. Cohen, T. Gregoire and J.G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, JHEP 08 (2002) 020 [hep-ph/0202089] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    N. Arkani-Hamed et al., The Minimal Moose for a Little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    D.E. Kaplan and M. Schmaltz, The little Higgs from a simple group, JHEP 10 (2003) 039 [hep-ph/0302049] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].ADSGoogle Scholar
  7. [7]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    S. Chang and H.-J. He, Unitarity of little Higgs models signals new physics of UV completion, Phys. Lett. B 586 (2004) 95 [hep-ph/0311177] [SPIRES].ADSGoogle Scholar
  9. [9]
    C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Big corrections from a little Higgs, Phys. Rev. D 67 (2003) 115002 [hep-ph/0211124] [SPIRES].ADSGoogle Scholar
  10. [10]
    C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Variations of little Higgs models and their electroweak constraints, Phys. Rev. D 68 (2003) 035009 [hep-ph/0303236] [SPIRES].ADSGoogle Scholar
  11. [11]
    T. Gregoire, D. Tucker-Smith and J.G. Wacker, What precision electroweak physics says about the SU(6)/Sp(6) little Higgs, Phys. Rev. D 69 (2004) 115008 [hep-ph/0305275] [SPIRES].ADSGoogle Scholar
  12. [12]
    C. Kilic and R. Mahbubani, Precision electroweak observables in the minimal moose little Higgs model, JHEP 07 (2004) 013 [hep-ph/0312053] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    W. Kilian and J. Reuter, The low-energy structure of little Higgs models, Phys. Rev. D 70 (2004) 015004 [hep-ph/0311095] [SPIRES].ADSGoogle Scholar
  14. [14]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    G. Marandella, C. Schappacher and A. Strumia, Little-Higgs corrections to precision data after LEP2, Phys. Rev. D 72 (2005) 035014 [hep-ph/0502096] [SPIRES].ADSGoogle Scholar
  16. [16]
    Z. Han and W. Skiba, Little Higgs models and electroweak measurements, Phys. Rev. D 72 (2005) 035005 [hep-ph/0506206] [SPIRES].ADSGoogle Scholar
  17. [17]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    I. Low, T parity and the littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    C.T. Hill and R.J. Hill, Topological Physics of Little Higgs Bosons, Phys. Rev. D 75 (2007) 115009 [hep-ph/0701044] [SPIRES].ADSGoogle Scholar
  21. [21]
    C.T. Hill and R.J. Hill, T-parity violation by anomalies, Phys. Rev. D 76 (2007) 115014 [arXiv:0705.0697] [SPIRES].ADSGoogle Scholar
  22. [22]
    E. Katz, J.-y. Lee, A.E. Nelson and D.G.E. Walker, A composite little Higgs model, JHEP 10 (2005) 088 [hep-ph/0312287] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    I. Low, W. Skiba and D. Tucker-Smith, Little Higgses from an antisymmetric condensate, Phys. Rev. D 66 (2002) 072001 [hep-ph/0207243] [SPIRES].ADSGoogle Scholar
  24. [24]
    M. Schmaltz and J. Thaler, Collective Quartics and Dangerous Singlets in Little Higgs, JHEP 03 (2009) 137 [arXiv:0812.2477] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    A. Hook and J.G. Wacker, Collective Quartics from Simple Groups, JHEP 06 (2010) 041 [arXiv:0912.0937] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    P. Batra and Z. Chacko, Symmetry Breaking Patterns for the Little Higgs from Strong Dynamics, Phys. Rev. D 77 (2008) 055015 [arXiv:0710.0333] [SPIRES].ADSGoogle Scholar
  27. [27]
    M. Piai, A. Pierce and J.G. Wacker, Composite vector mesons from QCD to the little Higgs, hep-ph/0405242 [SPIRES].
  28. [28]
    D. Krohn and I. Yavin, Anomalies in Fermionic UV Completions of Little Higgs Models, JHEP 06 (2008) 092 [arXiv:0803.4202] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    A. Freitas, P. Schwaller and D. Wyler, A Little Higgs Model with Exact Dark Matter Parity, JHEP 12 (2009) 027 [arXiv:0906.1816] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    C. Csáki, J. Heinonen, M. Perelstein and C. Spethmann, A Weakly Coupled Ultraviolet Completion of the Littlest Higgs with T -parity, Phys. Rev. D 79 (2009) 035014 [arXiv:0804.0622] [SPIRES].ADSGoogle Scholar
  31. [31]
    D. Pappadopulo and A. Vichi, T-parity, its problems and their solution, JHEP 03 (2011) 072 [arXiv:1007.4807] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [SPIRES].ADSGoogle Scholar
  33. [33]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D7 (1973) 1888 [SPIRES].ADSGoogle Scholar
  34. [34]
    H. Georgi, Vector Realization of Chiral Symmetry, Nucl. Phys. B 331 (1990) 311 [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [SPIRES].ADSGoogle Scholar
  36. [36]
    E.M. Dolle and S. Su, The Inert Dark Matter, Phys. Rev. D 80 (2009) 055012 [arXiv:0906.1609] [SPIRES].ADSGoogle Scholar
  37. [37]
    R. Barbieri and A. Strumia, The ’LEP paradox’, hep-ph/0007265 [SPIRES].
  38. [38]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].ADSGoogle Scholar
  39. [39]
    H.E. Haber, Introductory low-energy supersymmetry, hep-ph/9306207 [SPIRES].
  40. [40]
    J. Hubisz, P. Meade, A. Noble and M. Perelstein, Electroweak precision constraints on the littlest Higgs model with T parity, JHEP 01 (2006) 135 [hep-ph/0506042] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    T. Hambye and M.H.G. Tytgat, Electroweak Symmetry Breaking induced by Dark Matter, Phys. Lett. B 659 (2008) 651 [arXiv:0707.0633] [SPIRES].ADSGoogle Scholar
  43. [43]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: An archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [SPIRES].ADSGoogle Scholar
  44. [44]
    L. Lopez Honorez and C.E. Yaguna, A new viable region of the inert doublet model, JCAP 01 (2011) 002 [arXiv:1011.1411] [SPIRES].ADSGoogle Scholar
  45. [45]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs2.1, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [SPIRES].ADSMATHCrossRefGoogle Scholar
  46. [46]
    D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].ADSGoogle Scholar
  47. [47]
    A. Belyaev, C.-R. Chen, K. Tobe and C.P. Yuan, Phenomenology of littlest Higgs model with T -parity: including effects of T -odd fermions, Phys. Rev. D 74 (2006) 115020 [hep-ph/0609179] [SPIRES].ADSGoogle Scholar
  48. [48]
    M.S. Carena, J. Hubisz, M. Perelstein and P. Verdier, Collider signature of T -quarks, Phys. Rev. D 75 (2007) 091701 [hep-ph/0610156] [SPIRES].ADSGoogle Scholar
  49. [49]
    P. Meade and M. Reece, Top partners at the LHC: Spin and mass measurement, Phys. Rev. D 74 (2006) 015010 [hep-ph/0601124] [SPIRES].ADSGoogle Scholar
  50. [50]
    Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [SPIRES].ADSGoogle Scholar
  51. [51]
    E. Dolle, X. Miao, S. Su and B. Thomas, Dilepton Signals in the Inert Doublet Model, Phys. Rev. D 81 (2010) 035003 [arXiv:0909.3094] [SPIRES].ADSGoogle Scholar
  52. [52]
    X. Miao, S. Su and B. Thomas, Trilepton Signals in the Inert Doublet Model, Phys. Rev. D 82 (2010) 035009 [arXiv:1005.0090] [SPIRES].ADSGoogle Scholar
  53. [53]
    J. Hubisz, S.J. Lee and G. Paz, The flavor of a little Higgs with T -parity, JHEP 06 (2006) 041 [hep-ph/0512169] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Tom Brown
    • 1
  • Claudia Frugiuele
    • 1
  • Thomas Grégoire
    • 1
  1. 1.Ottawa-Carleton Institute for Physics, Department of PhysicsCarleton UniversityOttawaCanada

Personalised recommendations