Advertisement

Capability of LHC to discover supersymmetry with \( \sqrt {s} = 7\;{\text{TeV}} \) and 1 fb−1

  • Howard Baer
  • Vernon Barger
  • Andre Lessa
  • Xerxes Tata
Article

Abstract

We examine the capability of the CERN Large Hadron Collider to discovery supersymmetry (SUSY) with energy \( \sqrt {s} = 7\;{\text{TeV}} \) and integrated luminosity of about 1 fb−1. Our results are presented within the paradigm minimal supergravity model (mSUGRA or CMSSM). Using a 6-dimensional grid of cuts for optimization of signal to background — including missing E T — we find for \( {m_{\tilde{g}}} \sim {m_{\tilde{q}}} \) an LHC reach of \( {m_{\tilde{g}}} \) ~ 800, 950, 1100 and 1200 GeV for 0.1, 0.3, 1 and 2 fb−1, respectively. For \( {m_{\tilde{g}}} \ll {m_{\tilde{q}}} \), the reach is instead near \( {m_{\tilde{g}}} \) ~ 480, 540, 620 and 700 GeV, for the same integrated luminosities. We also examine the LHC reach in the case of very low integrated luminosity where missing E T may not be viable. We focus on the multi-muon, multi-lepton (including electrons) and dijet signals. Although the LHC reach without E T miss is considerably lower in these cases, it is still substantial: for 0.3 fb−1, the dijet reach in terms of gluino mass is up to 600 GeV for very low m 0, while the dilepton reach is to gluino masses of ∼500 GeV over a range of m 0 values.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    N. Sakai, Naturalness in supersymmetric guts, Z. Phys. C 11 (1981) 153 [SPIRES].ADSGoogle Scholar
  3. [3]
    H. Baer and X. Tata, Weak scale supersymmetry: from superfields to scattering events, Cambridge University Press, Cambridge U.K. (2006).CrossRefGoogle Scholar
  4. [4]
    M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles, World Scientific, Singapore (2004).Google Scholar
  5. [5]
    P. Binétruy, Supersymmetry, Oxford University Press, Oxford U.K. (2006).MATHGoogle Scholar
  6. [6]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].
  7. [7]
    H. Baer, X. Tata and J. Woodside, Multi-lepton signals from supersymmetry at hadron super colliders, Phys. Rev. D 45 (1992) 142 [SPIRES].ADSGoogle Scholar
  8. [8]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN Large Hadron Collider: multi-jet plus missing energy channel, Phys. Rev. D 52 (1995) 2746 [hep-ph/9503271] [SPIRES].ADSGoogle Scholar
  9. [9]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN Large Hadron Collider II: multilepton chanels, Phys. Rev. D 53 (1996) 6241 [hep-ph/9512383] [SPIRES].ADSGoogle Scholar
  10. [10]
    H. Baer, C.-h. Chen, M. Drees, F. Paige and X. Tata, Probing minimal supergravity at the CERN LHC for large tan β, Phys. Rev. D 59 (1999) 055014 [hep-ph/9809223] [SPIRES].ADSGoogle Scholar
  11. [11]
    H. Baer, C. Balázs, A. Belyaev, T. Krupovnickas and X. Tata, Updated reach of the CERN LHC and constraints from relic density, bsγ and a(μ) in the mSUGRA model, JHEP 06 (2003) 054 [hep-ph/0304303] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    S. Abdullin and F. Charles, Search for SUSY in (leptons +) jets + E T miss final states, Nucl. Phys. B 547 (1999) 60 [hep-ph/9811402] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    CMS collaboration, S. Abdullin et al., Discovery potential for supersymmetry in CMS, J. Phys. G 28 (2002) 469 [hep-ph/9806366] [SPIRES].ADSGoogle Scholar
  14. [14]
    B.C. Allanach, J.P.J. Hetherington, M.A. Parker and B.R. Webber, Naturalness reach of the Large Hadron Collider in minimal supergravity, JHEP 08 (2000) 017 [hep-ph/0005186] [SPIRES].ADSGoogle Scholar
  15. [15]
    E. Izaguirre, M. Manhart and J.G. Wacker, Bigger, better, faster, more at the LHC, arXiv:1003.3886 [SPIRES].
  16. [16]
    A. Chamseddine, R. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    R. Barbieri, S. Ferrara and C. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [SPIRES].ADSGoogle Scholar
  18. [18]
    N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    L. Hall, J. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [SPIRES].ADSGoogle Scholar
  20. [20]
    D. Volkov and V. Soroka, Higgs effect for Goldstone particles with spin 1/2, JETP Lett. 18 (1973) 312 [Pisma Zh. Eksp. Teor. Fiz. 18 (1973) 529] [SPIRES].ADSGoogle Scholar
  21. [21]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills theories with local supersymmetry: lagrangian, transformation laws and superHiggs effect, Nucl. Phys. B 212 (1983) 413 [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    H. Baer, H. Prosper and H. Summy, Early SUSY discovery at LHC without missing E T : the role of multi-leptons, Phys. Rev. D 77 (2008) 055017 [arXiv:0801.3799] [SPIRES].ADSGoogle Scholar
  23. [23]
    H. Baer, A. Lessa and H. Summy, Early SUSY discovery at LHC via sparticle cascade decays to same-sign and multimuon states, Phys. Lett. B 674 (2009) 49 [arXiv:0809.4719] [SPIRES].ADSGoogle Scholar
  24. [24]
    J. Edsjo, E. Lundstrom, S. Rydbeck and J. Sjolin, Early search for supersymmetric dark matter models at the LHC without missing energy, JHEP 03 (2010) 054 [arXiv:0910.1106] [SPIRES].CrossRefGoogle Scholar
  25. [25]
    L. Randall and D. Tucker-Smith, Dijet searches for supersymmetry at the LHC, Phys. Rev. Lett. 101 (2008) 221803 [arXiv:0806.1049] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt {s} = 10 \) and 14 TeV without and with missing E T, JHEP 09 (2009) 063 [arXiv:0907.1922] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    CMS collaboration, V. Khachatryan et al., Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at \( \sqrt {{(s}} ) = 0.9 \) and 2.36 TeV, JHEP 02 (2010) 041 [arXiv:1002.0621] [SPIRES].CrossRefGoogle Scholar
  28. [28]
    CMS collaboration, A.N. Safonov, CMS experiment at the LHC: commissioning and early physics, arXiv:1003.4038 [SPIRES].
  29. [29]
    CMS collboration, Missing ET in 0.9 and 2.36 TeV pp collisions, CMS-PAS-JME-10-002.
  30. [30]
    CMS collboration, Electromagnetic physics objects commissioning with first LHC data, CMS-PAS-EGM-10-001.
  31. [31]
    CMS collboration, First steps with data: photons. Di-photon resonances, CMS-PAS-PFT-10-001.Google Scholar
  32. [32]
    ATLAS collaboration, G. Aad et al., Charged-particle multiplicities in pp interactions at \( \sqrt {s} = 900 \) GeV measured with the ATLAS detector at the LHC, Phys. Lett. B 688 (2010) 21 [arXiv:1003.3124] [SPIRES].ADSGoogle Scholar
  33. [33]
    H. Baer, V. Barger and G. Shaughnessy, SUSY backgrounds to standard model calibration processes at the LHC, Phys. Rev. D 78 (2008) 095009 [arXiv:0806.3745] [SPIRES].ADSGoogle Scholar
  34. [34]
    M.L. Mangano, Standard model backgrounds to supersymmetry searches, Eur. Phys. J. C 59 (2009) 373 [arXiv:0809.1567] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    H. Baer, TASI 2008 lectures on collider Signals II: E T miss signatures and the dark matter connection, arXiv:0901.4732 [SPIRES].
  36. [36]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES];CrossRefADSGoogle Scholar
  38. [38]
    F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: A Monte Carlo event generator for pp, \( \bar{p}p \) and e + e reactions, hep-ph/0312045 [SPIRES].
  39. [39]
    H. Baer, J. Ferrandis, S. Kraml and W. Porod, On the treatment of threshold effects in SUSY spectrum computations, Phys. Rev. D 73 (2006) 015010 [hep-ph/0511123] [SPIRES].ADSGoogle Scholar
  40. [40]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the PROduction of Supersymmetric Particles In Next-to-leading Order QCD, hep-ph/9611232 [SPIRES].
  41. [41]
    A.D. Box and X. Tata, Threshold and flavour effects in the renormalization group equations of the MSSM I: dimensionless couplings, Phys. Rev. D 77 (2008) 055007 [arXiv:0712.2858] [SPIRES].ADSGoogle Scholar
  42. [42]
    A.D. Box and X. Tata, Threshold and flavour effects in the renormalization group equations of the MSSM II: dimensionful couplings, Phys. Rev. D 79 (2009) 035004 [arXiv:0810.5765] [SPIRES].ADSGoogle Scholar
  43. [43]
    Isajet 7.79 manual, avaiable at http://www.nhn.ou.edu/˜isajet/.
  44. [44]
    R.K. Ellis, An update on the next-to-leading order Monte Carlo MCFM, Nucl. Phys. Proc. Suppl. 160 (2006) 170 [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  46. [46]
    ATLAS collaboration, G. Aad et al., Prospects for supersymmetry and univeral extra dimensions discovery based on inclusive searches at a 10 TeV centre-of-mass energy with the ATLAS detector, ATLAS-PHYS-PUB-2009-084.
  47. [47]
    H. Baer, K. Hagiwara and X. Tata, Gauginos as a signal for supersymmetry at \( p\bar{p} \) colliders, Phys. Rev. D 35 (1987) 1598 [SPIRES].ADSGoogle Scholar
  48. [48]
    H. Baer, D.D. Karatas and X. Tata, Gluino and squark production in association with gauginos at hadron supercolliders, Phys. Rev. D 42 (1990) 2259 [SPIRES].ADSGoogle Scholar
  49. [49]
    H. Baer, C. Kao and X. Tata, Aspects of chargino-neutralino production at the Tevatron collider, Phys. Rev. D 48 (1993) 5175 [hep-ph/9307347] [SPIRES].ADSGoogle Scholar
  50. [50]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Trileptons from chargino-neutralino production at the CERN Large Hadron Collider, Phys. Rev. D 50 (1994) 4508 [hep-ph/9404212] [SPIRES].ADSGoogle Scholar
  51. [51]
    I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [SPIRES].ADSGoogle Scholar
  52. [52]
    H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [SPIRES].ADSGoogle Scholar
  53. [53]
    ATLAS collaboration, ATLAS physics and detector performance technical design report. Volume 1, CERN-LHCC-99-014.
  54. [54]
    ATLAS collaboration, ATLAS physics and detector performance technical design report. Volume 2, CERN-LHCC-99-015.
  55. [55]
    ATLAS collaboration, Expected performance of the ATLAS experiment: detector, trigger and physics, CERN-OPEN-2008-020.Google Scholar
  56. [56]
    CMS collaboration, Physics technical design report. Volume 2, CERN-LHCC-2006-021.
  57. [57]
    H. Baer, M. Bisset, X. Tata and J. Woodside, Supercollider signals from gluino and squark decays to Higgs bosons, Phys. Rev. D 46 (1992) 303 [SPIRES].ADSGoogle Scholar
  58. [58]
    H. Baer, J.R. Ellis, G.B. Gelmini, D.V. Nanopoulos and X. Tata, Squark decays into gauginos at the \( p\bar{p} \) collider, Phys. Lett. B 161 (1985) 175 [SPIRES].ADSGoogle Scholar
  59. [59]
    G. Gamberini, Heavy gluino and squark decays at p anti-p collider, Z. Phys. C 30 (1986) 605 [SPIRES].ADSGoogle Scholar
  60. [60]
    H. Baer, V.D. Barger, D. Karatas and X. Tata, Detecting gluinos at hadron supercolliders, Phys. Rev. D 36 (1987) 96 [SPIRES].ADSGoogle Scholar
  61. [61]
    U. Chattopadhyay, A. Datta, A. Datta, A. Datta and D.P. Roy, LHC signature of the minimal SUGRA model with a large soft scalar mass, Phys. Lett. B 493 (2000) 127 [hep-ph/0008228] [SPIRES].ADSGoogle Scholar
  62. [62]
    P.G. Mercadante, J.K. Mizukoshi and X. Tata, Using b-tagging to enhance the SUSY reach of the CERN Large Hadron Collider, Phys. Rev. D 72 (2005) 035009 [hep-ph/0506142] [SPIRES].ADSGoogle Scholar
  63. [63]
    S.P. Das, A. Datta, M. Guchait, M. Maity and S. Mukherjee, Focus point SUSY at the LHC revisited, Eur. Phys. J. C 54 (2008) 645 [arXiv:0708.2048] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    R.H.K. Kadala, P.G. Mercadante, J.K. Mizukoshi and X. Tata, Heavy-flavour tagging and the supersymmetry reach of the CERN Large Hadron Collider, Eur. Phys. J. C 56 (2008) 511 [arXiv:0803.0001] [SPIRES].CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Howard Baer
    • 1
  • Vernon Barger
    • 2
  • Andre Lessa
    • 1
  • Xerxes Tata
    • 2
    • 3
  1. 1.Dept. of Physics and AstronomyUniversity of OklahomaNormanU.S.A.
  2. 2.Dept. of PhysicsUniversity of WisconsinMadisonU.S.A.
  3. 3.Dept. of Physics and AstronomyUniversity of HawaiiHonoluluU.S.A.

Personalised recommendations