Advertisement

Higher-order QCD perturbation theory in different schemes: from FOPT to CIPT to FAPT

  • A. P. Bakulev
  • S. V. Mikhailov
  • N. G. Stefanis
Article

Abstract

Results on the resummation of non-power-series expansions of the Adler function of a scalar, D S , and a vector, D V , correlator are presented within fractional analytic perturbation theory (FAPT). The first observable can be used to determine the decay width \( {\Gamma_{H \to b\overline b }} \) of a scalar Higgs boson to a bottom-antibottom pair, while the second one is relevant for the e + e annihilation cross section. The obtained estimates are compared with those from fixed-order (FOPT) and contour-improved perturbation theory (CIPT), working out the differences. We prove that although FAPT and CIPT are conceptually different, they yield identical results. The convergence properties of these expansions are discussed and predictions are extracted for the resummed series of R S and D V using oneand two-loop coupling running, and making use of appropriate generating functions for the coefficients of the perturbative series.

Keywords

NLO Computations QCD Phenomenological Models 

References

  1. [1]
    D.V. Shirkov and I.L. Solovtsov, Analytic model for the QCD running coupling with universal \( {\overline \alpha_s}(0) \) value, Phys. Rev. Lett. 79 (1997) 1209 [hep-ph/9704333] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    A.V. Radyushkin, Optimized Λ - parametrization for the QCD running coupling constant in space - like and time - like regions, JINR Rapid Commun. 78 (1996) 96 [hep-ph/9907228] [SPIRES].Google Scholar
  3. [3]
    N.V. Krasnikov and A.A. Pivovarov, The influence of the analytical continuation effects on the value of the QCD scale parameter Λ extracted from the data on charmonium and upsilon hadron decays, Phys. Lett. B 116 (1982) 168 [SPIRES].ADSGoogle Scholar
  4. [4]
    K.A. Milton and I.L. Solovtsov, Analytic perturbation theory in QCD and Schwinger’s connection between the β-function and the spectral density, Phys. Rev. D 55 (1997) 5295 [hep-ph/9611438] [SPIRES].ADSGoogle Scholar
  5. [5]
    K.A. Milton and O.P. Solovtsova, Analytic perturbation theory: A new approach to the analytic continuation of the strong coupling constant αs into the timelike region, Phys. Rev. D 57 (1998) 5402 [hep-ph/9710316] [SPIRES].ADSGoogle Scholar
  6. [6]
    I.L. Solovtsov and D.V. Shirkov, Analytic approach to perturbative QCD and renormalization scheme dependence, Phys. Lett. B 442 (1998) 344 [hep-ph/9711251] [SPIRES].ADSGoogle Scholar
  7. [7]
    B.A. Magradze, Analytic approach to perturbative QCD, Int. J. Mod. Phys. A 15 (2000) 2715 [hep-ph/9911456] [SPIRES].ADSGoogle Scholar
  8. [8]
    B.A. Magradze, QCD coupling up to third order in standard and analytic perturbation theories, hep-ph/0010070 [SPIRES].
  9. [9]
    D.S. Kourashev and B.A. Magradze, Explicit expressions for Euclidean and Minkowskian QCD observables in analytic perturbation theory, hep-ph/0104142 [SPIRES].
  10. [10]
    B.A. Magradze, Practical techniques of analytic perturbation theory of QCD, hep-ph/0305020 [SPIRES].
  11. [11]
    D.S. Kurashev and B.A. Magradze, Explicit expressions for timelike and spacelike observables of quantum chromodynamics in analytic perturbation theory, Theor. Math. Phys. 135 (2003) 531 [Teor. Mat. Fiz. 135 (2003) 95] [SPIRES].MATHCrossRefGoogle Scholar
  12. [12]
    B.A. Magradze, A Novel series solution to the renormalization group equation in QCD, Few Body Syst. 40 (2006) 71 [hep-ph/0512374] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    D.V. Shirkov and I.L. Solovtsov, Ten years of the Analytic Perturbation Theory in QCD, Theor. Math. Phys. 150 (2007) 132 [hep-ph/0611229] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    A.I. Karanikas and N.G. Stefanis, Analyticity and power corrections in hard-scattering hadronic functions, Phys. Lett. B 504 (2001) 225 [Erratum ibid. B 636 (2006) 330] [hep-ph/0101031] [SPIRES].ADSGoogle Scholar
  15. [15]
    N.G. Stefanis, Perturbative logarithms and power corrections in QCD hadronic functions: A unifying approach, Lect. Notes Phys. 616 (2003) 153 [hep-ph/0203103] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    N.G. Stefanis, W. Schroers and H.-C. Kim, Pion form factors with improved infrared factorization, Phys. Lett. B 449 (1999) 299 [hep-ph/9807298] [SPIRES].ADSGoogle Scholar
  17. [17]
    N.G. Stefanis, W. Schroers and H.-C. Kim, Analytic coupling and Sudakov effects in exclusive processes: Pion and γ*γ → π0 form factors, Eur. Phys. J. C 18 (2000) 137 [hep-ph/0005218] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    A.P. Bakulev, K. Passek-Kumericki, W. Schroers and N.G. Stefanis, Pion form factor in QCD: From nonlocal condensates to NLO analytic perturbation theory, Phys. Rev. D 70 (2004) 033014 [hep-ph/0405062] [SPIRES].ADSGoogle Scholar
  19. [19]
    N.G. Stefanis, Pion form factor analysis using NLO analytic perturbation theory, invited talk given at 11th International Conference in Quantum ChromoDynamics (QCD 04), Montpellier, France, 5-9 July (2004) Nucl. Phys. Proc. Suppl. 152 (2006) 245 [hep-ph/0410245] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    A.P. Bakulev, S.V. Mikhailov and N.G. Stefanis, QCD analytic perturbation theory: From integer powers to any power of the running coupling, Phys. Rev. D 72 (2005) 074014 [Erratum ibid. D 72 (2005) 119908] [hep-ph/0506311] [SPIRES].ADSGoogle Scholar
  21. [21]
    A.P. Bakulev, A.I. Karanikas and N.G. Stefanis, Analyticity properties of three-point functions in QCD beyond leading order, Phys. Rev. D 72 (2005) 074015 [hep-ph/0504275] [SPIRES].ADSGoogle Scholar
  22. [22]
    A.P. Bakulev, S.V. Mikhailov and N.G. Stefanis, Fractional analytic perturbation theory in Minkowski space and application to Higgs boson decay into a \( b\overline b \) pair, Phys. Rev. D 75 (2007) 056005 [Erratum ibid. D 77 (2008) 079901] [hep-ph/0607040] [SPIRES].ADSGoogle Scholar
  23. [23]
    N.G. Stefanis and A.I. Karanikas, Analyticity of QCD observables beyond leading-order perturbation theory, in Proceedings of International Seminar on Contemporary Problems of Elementary Particle Physics, dedicated to the Memory of I. L. Solovtsov, Dubna, January 17-18 (2008), A.P. Bakulev et al. eds., JINR, Dubna (2008), pg. 104 arXiv:0802.3176 [SPIRES].
  24. [24]
    N.G. Stefanis, Taming Landau singularities in QCD perturbation theory: The analytic approach, invited topical article prepared for the Modern Encyclopedia of Mathematical Physics (MEMPhys), Springer Verlag arXiv:0902.4805 [SPIRES].
  25. [25]
    D.V. Shirkov, Analytic perturbation theory for QCD observables, Theor. Math. Phys. 127 (2001) 409 [hep-ph/0012283] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    D.V. Shirkov, Analytic perturbation theory in analyzing some QCD observables, Eur. Phys. J. C 22 (2001) 331 [hep-ph/0107282] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    A.P. Bakulev, Global fractional analytic perturbation theory in QCD with selected applications, Phys. Part. Nucl. 40 (2009) 715 [arXiv:0805.0829] [SPIRES].CrossRefGoogle Scholar
  28. [28]
    S.V. Mikhailov, Generalization of BLM procedure and its scales in any order of pQCD: A practical approach, JHEP 06 (2007) 009 [hep-ph/0411397] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    A.P. Bakulev and S.V. Mikhailov, Resummation in (F)APT, in Proceedings of International Seminar on Contemporary Problems of Elementary Particle Physics, dedicated to the Memory of I. L. Solovtsov, Dubna, January 17-18 (2008) A.P. Bakulev et al. eds., JINR, Dubna (2008) pg. 119 arXiv:0803.3013 [SPIRES].
  30. [30]
    G. Cvetič and C. Valenzuela, Various versions of analytic QCD and skeleton-motivated evaluation of observables, Phys. Rev. D 74 (2006) 114030 [hep-ph/0608256] [SPIRES].ADSGoogle Scholar
  31. [31]
    L.N. Lipatov, Divergence of the perturbation theory series and the quasiclassical theory, Sov. Phys. JETP 45 (1977) 216 [Zh. Eksp. Teor. Fiz. 72 (1977) 411] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Scalar correlator at O(α4 s ), Higgs decay into bquarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Order α4 s QCD corrections to Z and τ decays, Phys. Rev. Lett. 101 (2008) 012002 [arXiv:0801.1821] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Adler Function, Bjorken Sum rule and the crewther relation to order α4 s in a general gauge theory, Phys. Rev. Lett. 104 (2010) 132004 [1001.3606] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    M. Davier, S. Descotes-Genon, A. Hocker, B. Malaescu and Z. Zhang, The determination of αs from τ decays revisited, Eur. Phys. J. C 56 (2008) 305 [arXiv:0803.0979] [SPIRES].CrossRefGoogle Scholar
  36. [36]
    A.L. Kataev and V.V. Starshenko, Estimates of the higher order QCD corrections to R s , R τ and deep inelastic scattering sum rules, Mod. Phys. Lett. A 10 (1995) 235 [hep-ph/9502348] [SPIRES].ADSGoogle Scholar
  37. [37]
    A.A. Pivovarov, Renormalization group analysis of the tau-lepton decay within QCD, Z. Phys. C 53 (1992) 461 [Sov. J. Nucl. Phys. 54 (1991) 676] [Yad. Fiz. 54 (1991) 1114] [hep-ph/0302003] [SPIRES].ADSGoogle Scholar
  38. [38]
    F. Le Diberder and A. Pich, Testing QCD with τ decays, Phys. Lett. B 289 (1992) 165 [SPIRES].ADSGoogle Scholar
  39. [39]
    S. Groote, J.G. Korner and A.A. Pivovarov, Spectral moments of two-point correlators in perturbation theory and beyond, Phys. Rev. D 65 (2002) 036001 [hep-ph/0105227] [SPIRES].ADSGoogle Scholar
  40. [40]
    A.L. Kataev and V.T. Kim, Uncertainties of QCD predictions for Higgs boson decay into bottom quarks at NNLO and beyond, PoS(ACAT08)004 [arXiv:0902.1442] [SPIRES].
  41. [41]
    D.V. Shirkov, Renormalization group, causality and nonpower perturbation expansion in QFT, Theor. Math. Phys. 119 (1999) 438 [Teor. Mat. Fiz. 119 (1999) 55] [hep-th/9810246] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    M. Neubert, Scale setting in QCD and the momentum flow in Feynman diagrams, Phys. Rev. D 51 (1995) 5924 [hep-ph/9412265] [SPIRES].ADSGoogle Scholar
  43. [43]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Towards order α4 s accuracy in tau decays, Phys. Rev. D 67 (2003) 074026 [hep-ph/0212299] [SPIRES].ADSGoogle Scholar
  44. [44]
    M. Beneke and M. Jamin, αs and the τ hadronic width: fixed-order, contour-improved and higher-order perturbation theory, JHEP 09 (2008) 044 [arXiv:0806.3156] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    D.I. Kazakov and D.V. Shirkov, Asymptotic series of quantum field theory and their summation, Fortsch. Phys. 28 (1980) 465 [SPIRES].CrossRefMathSciNetGoogle Scholar
  46. [46]
    J. Fischer, The use of power expansions in quantum field theory, Int. J. Mod. Phys. A 12 (1997) 3625 [hep-ph/9704351] [SPIRES].ADSGoogle Scholar
  47. [47]
    D.J. Broadhurst and A.G. Grozin, Matching QCD and HQET heavy - light currents at two loops and beyond, Phys. Rev. D 52 (1995) 4082 [hep-ph/9410240] [SPIRES].ADSGoogle Scholar
  48. [48]
    D.J. Broadhurst and A.L. Kataev, Connections between deep inelastic and annihilation processes at next to next-to-leading order and beyond, Phys. Lett. B 315 (1993) 179 [hep-ph/9308274] [SPIRES].ADSGoogle Scholar
  49. [49]
    K.G. Chetyrkin, Correlator of the quark scalar currents and Γtot(H → hadrons) at O(α3 s ) in pQCD, Phys. Lett. B 390 (1997) 309 [hep-ph/9608318] [SPIRES].ADSGoogle Scholar
  50. [50]
    D.J. Broadhurst, A.L. Kataev and C.J. Maxwell, Renormalons and multiloop estimates in scalar correlators, Higgs decay and quark-mass sum rules, Nucl. Phys. B 592 (2001) 247 [hep-ph/0007152] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    K.G. Chetyrkin, B.A. Kniehl and A. Sirlin, Estimations of order α3 s and α4 s corrections to mass-dependent observables, Phys. Lett. B 402 (1997) 359 [hep-ph/9703226] [SPIRES].ADSGoogle Scholar
  52. [52]
    D.J. Broadhurst and A.L. Kataev, Bjorken unpolarized and polarized sum rules: Comparative analysis of large-N(F) expansions, Phys. Lett. B 544 (2002) 154 [hep-ph/0207261] [SPIRES].ADSGoogle Scholar
  53. [53]
    J.H. Kuhn and M. Steinhauser, Determination of αs and heavy quark masses from recent measurements of R(s), Nucl. Phys. B 619 (2001) 588 [Erratum ibid. B 640 (2002) 415] [hep-ph/0109084] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    A.A. Penin and M. Steinhauser, Heavy quarkonium spectrum at \( \mathcal{O}\left( {\alpha_s^5{m_q}} \right) \) and bottom/top quark mass determination, Phys. Lett. B 538 (2002) 335 [hep-ph/0204290] [SPIRES].ADSGoogle Scholar
  55. [55]
    CDF and D0 collaborations, K. Herner, Standard Model higgs searches at the Tevatron, talk given at DIS2010, Firenze, Italy, April 20 (2010).Google Scholar
  56. [56]
    ATLAS collaboration, E. Coniavitis, Search for the higgs boson at the ATLAS experiment, talk given at DIS2010, Firenze, Italy, April 20 (2010).Google Scholar
  57. [57]
    D.V. Shirkov and S.V. Mikhailov, Mass dependent alpha-s evolution and the light gluino existence, Z. Phys. C 63 (1994) 463 [hep-ph/9401270] [SPIRES].ADSGoogle Scholar
  58. [58]
    D.V. Shirkov and I.L. Solovtsov, Analytic QCD running coupling with finite IR behavior and universal αs(0) value., JINR Rapid Commun. 2[76] (1996) 5 [hep-ph/9604363] [SPIRES].Google Scholar
  59. [59]
    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four-loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [SPIRES].ADSGoogle Scholar
  60. [60]
    K.G. Chetyrkin and M. Steinhauser, Short distance mass of a heavy quark at order α3 s, Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    K.G. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order α3 s, Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three loop relation of quark (modified) MS and pole masses, Z. Phys. C 48 (1990) 673 [SPIRES].ADSGoogle Scholar
  63. [63]
    A.L. Kataev and V.T. Kim, Higgs boson decay into bottom quarks and uncertainties of perturbative QCD predictions, arXiv:0804.3992 [SPIRES].
  64. [64]
    K.G. Chetyrkin et al., Charm and bottom quark masses: an update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [SPIRES].ADSGoogle Scholar
  65. [65]
    J.H. Kuhn, Multi-loop results, Charm- and bottom-quark masses and the strong coupling constant, arXiv:0809.1780 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • A. P. Bakulev
    • 1
  • S. V. Mikhailov
    • 1
  • N. G. Stefanis
    • 1
    • 2
  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJINRDubnaRussia
  2. 2.Institut für Theoretische Physik II, Fakultät für Physik und AstronomieRuhr-Universität BochumBochumGermany

Personalised recommendations