Advertisement

Strings on bubbling geometries

  • Hai Lin
  • Alexander Morisse
  • Jonathan P. Shock
Article

Abstract

We study gauge theory operators which take the form of a product of a trace with a Schur polynomial, and their string theory duals. These states represent strings excited on bubbling AdS geometries which are dual to the Schur polynomials. These geometries generically take the form of multiple annuli in the phase space plane. We study the coherent state wavefunction of the lattice, which labels the trace part of the operator, for a general Young tableau and their dual description on the droplet plane with a general concentric ring pattern. In addition we identify a density matrix over the coherent states on all the geometries within a fixed constraint. This density matrix may be used to calculate the entropy of a given ensemble of operators. We finally recover the BMN string spectrum along the geodesic near any circle from the ansatz of the coherent state wave-function.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Sigma Models 

References

  1. [1]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [SPIRES].
  3. [3]
    G.T. Horowitz and J. Polchinski, Gauge/gravity duality, gr-qc/0602037 [SPIRES].
  4. [4]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [SPIRES].MathSciNetGoogle Scholar
  5. [5]
    D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    S.E. Vazquez, Reconstructing 1/2 BPS space-time metrics from matrix models and spin chains, Phys. Rev. D 75 (2007) 125012 [hep-th/0612014] [SPIRES].ADSGoogle Scholar
  8. [8]
    H.-Y. Chen, D.H. Correa and G.A. Silva, Geometry and topology of bubble solutions from gauge theory, Phys. Rev. D 76 (2007) 026003 [hep-th/0703068] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    R.d.M. Koch, Geometries from Young diagrams, JHEP 11 (2008) 061 [arXiv:0806.0685] [SPIRES].CrossRefGoogle Scholar
  10. [10]
    R.d.M. Koch, N. Ives and M. Stephanou, Correlators in nontrivial backgrounds, Phys. Rev. D 79 (2009) 026004 [arXiv:0810.4041] [SPIRES].ADSGoogle Scholar
  11. [11]
    R. de Mello Koch, T.K. Dey, N. Ives and M. Stephanou, Correlators of operators with a large R-charge, JHEP 08 (2009) 083 [arXiv:0905.2273] [SPIRES].CrossRefGoogle Scholar
  12. [12]
    R.d.M. Koch and J. Murugan, Emergent spacetime, arXiv:0911.4817 [SPIRES].
  13. [13]
    G. Mandal, Fermions from half-BPS supergravity, JHEP 08 (2005) 052 [hep-th/0502104] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    L. Grant, L. Maoz, J. Marsano, K. Papadodimas and V.S. Rychkov, Minisuperspace quantization of ’bubbling AdS’ and free fermion droplets, JHEP 08 (2005) 025 [hep-th/0505079] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    P. Hořava and P.G. Shepard, Topology changing transitions in bubbling geometries, JHEP 02 (2005) 063 [hep-th/0502127] [SPIRES].ADSGoogle Scholar
  16. [16]
    T.W. Brown, R. de Mello Koch, S. Ramgoolam and N. Toumbas, Correlators, probabilities and topologies in N = 4 SYM, JHEP 03 (2007) 072 [hep-th/0611290] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006) 037 [hep-th/0603208] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    O. Lunin, On gravitational description of Wilson lines, JHEP 06 (2006) 026 [hep-th/0604133] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    J. Gomis and F. Passerini, Holographic Wilson loops, JHEP 08 (2006) 074 [hep-th/0604007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    E. D’Hoker, J. Estes and M. Gutperle, Gravity duals of half-BPS Wilson loops, JHEP 06 (2007) 063 [arXiv:0705.1004] [SPIRES].CrossRefMathSciNetGoogle Scholar
  21. [21]
    S. Gukov and E. Witten, Rigid surface operators, arXiv:0804.1561 [SPIRES].
  22. [22]
    J. Gomis and S. Matsuura, Bubbling surface operators and S-duality, JHEP 06 (2007) 025 [arXiv:0704.1657] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    H. Lin and J.M. Maldacena, Fivebranes from gauge theory, Phys. Rev. D 74 (2006) 084014 [hep-th/0509235] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    J. Gomis and C. Romelsberger, Bubbling defect CFT’s, JHEP 08 (2006) 050 [hep-th/0604155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP 01 (2006) 125 [hep-th/0507203] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    D. Berenstein and R. Cotta, A Monte-Carlo study of the AdS/CFT correspondence: an exploration of quantum gravity effects, JHEP 04 (2007) 071 [hep-th/0702090] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    B. Chen et al., Bubbling AdS and droplet descriptions of BPS geometries in IIB supergravity, JHEP 10 (2007) 003 [arXiv:0704.2233] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    E. Gava, G. Milanesi, K.S. Narain and M. O’Loughlin, 1/8 BPS states in AdS/CFT, JHEP 05 (2007) 030 [hep-th/0611065] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    A. Donos, BPS states in type IIB SUGRA with SO(4) × SO(2) (gauged) symmetry, JHEP 05 (2007) 072 [hep-th/0610259] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    N. Kim, AdS 3 solutions of IIB supergravity from D3-branes, JHEP 01 (2006) 094 [hep-th/0511029] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    O. Lunin, Brane webs and 1/4-BPS geometries, JHEP 09 (2008) 028 [arXiv:0802.0735] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    R. Bhattacharyya, S. Collins and R.d.M. Koch, Exact multi-matrix correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    R. Roiban, A. Tirziu and A.A. Tseytlin, Asymptotic Bethe ansatz S-matrix and Landau-Lifshitz type effective 2 − D actions, J. Phys. A 39 (2006) 13129 [hep-th/0604199] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    S.S. Gubser and J.J. Heckman, Thermodynamics of R-charged black holes in AdS 5 from effective strings, JHEP 11 (2004) 052 [hep-th/0411001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    M.M. Caldarelli, D. Klemm and P.J. Silva, Chronology protection in Anti-de Sitter, Class. Quant. Grav. 22 (2005) 3461 [hep-th/0411203] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  39. [39]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [SPIRES].ADSGoogle Scholar
  40. [40]
    L. D’Errico, W. Mueck and R. Pettorino, Stretched horizon and entropy of superstars, JHEP 05 (2007) 063 [hep-th/0703223] [SPIRES].CrossRefGoogle Scholar
  41. [41]
    V. Balasubramanian, B. Czech, K. Larjo, D. Marolf and J. Simon, Quantum geometry and gravitational entropy, JHEP 12 (2007) 067 [arXiv:0705.4431] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    N.V. Suryanarayana, Half-BPS giants, free fermions and microstates of superstars, JHEP 01 (2006) 082 [hep-th/0411145] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    H.-H. Shieh, G. van Anders and M. Van Raamsdonk, Coarse-graining the Lin-Maldacena geometries, JHEP 09 (2007) 059 [arXiv:0705.4308] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    W.-M. Zhang, D.H. Feng and R. Gilmore, Coherent states: theory and some applications, Rev. Mod. Phys. 62 (1990) 867 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    J.R. Klauder and B.S. Skagerstam, Coherent states, World Scientific, Singapore (1985).MATHGoogle Scholar
  46. [46]
    A. Perelomov, Generalized coherent states and their applications, Springer-Verlag, Berlin Germay (1986).MATHGoogle Scholar
  47. [47]
    D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095 [hep-th/0604135] [SPIRES].MathSciNetGoogle Scholar
  48. [48]
    N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [SPIRES].MathSciNetGoogle Scholar
  49. [49]
    N. Beisert, The analytic Bethe ansatz for a chain with centrally extended SU(2|2) symmetry, J. Stat. Mech. (2007) P01017 [nlin/0610017].
  50. [50]
    V.G. Filev and C.V. Johnson, Operators with large quantum numbers, spinning strings and giant gravitons, Phys. Rev. D 71 (2005) 106007 [hep-th/0411023] [SPIRES].MathSciNetADSGoogle Scholar
  51. [51]
    H. Ebrahim and A.E. Mosaffa, Semiclassical string solutions on 1/2 BPS geometries, JHEP 01 (2005) 050 [hep-th/0501072] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    M. Alishahiha, H. Ebrahim, B. Safarzadeh and M.M. Sheikh-Jabbari, Semi-classical probe strings on giant gravitons backgrounds, JHEP 11 (2005) 005 [hep-th/0509160] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Hai Lin
    • 1
  • Alexander Morisse
    • 1
  • Jonathan P. Shock
    • 1
  1. 1.Department of Particle Physics, Faculty of PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations