Advertisement

Warped anti-de Sitter spaces from brane intersections in type II string theory

  • Domenico Orlando
  • Linda I. Uruchurtu
Article

Abstract

We consider explicit type II string constructions of backgrounds containing warped and squashed anti-de Sitter spaces. These are obtained via T-duality from brane intersections including dyonic black strings, plane waves and monopoles. We also study the supersymmetry of these solutions and discuss special values of the deformation parameters.

Keywords

Supersymmetry and Duality D-branes AdS-CFT Correspondence String Duality 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  2. [2]
    Y. Nutku, Exact solutions of topologically massive gravity with a cosmological constant, Class. Quant. Grav. 10 (1993) 2657 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    G. Compere and S. Detournay, Semi-classical central charge in topologically massive gravity, Class. Quant. Grav. 26 (2009) 012001 [Erratum ibid. 26 (2009) 139801] [arXiv:0808.1911] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [Annals Phys. 185 (1988) 406] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    D.D.K. Chow, C.N. Pope and E. Sezgin, Classification of solutions in topologically massive gravity, Class. Quant. Grav. 27 (2010) 105001 [arXiv:0906.3559] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    D. Anninos, M. Esole and M. Guica, Stability of warped AdS 3 vacua of topologically massive gravity, JHEP 10 (2009) 083 [arXiv:0905.2612] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    D. Israël, Quantization of heterotic strings in a Gödel/anti de Sitter spacetime and chronology protection, JHEP 01 (2004) 042 [hep-th/0310158] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    D. Israël, C. Kounnas, D. Orlando and P.M. Petropoulos, Electric/magnetic deformations of S 3 and AdS 3 and geometric cosets, Fortsch. Phys. 53 (2005) 73 [hep-th/0405213] [SPIRES].MATHCrossRefADSGoogle Scholar
  10. [10]
    S. Detournay, D. Orlando, P.M. Petropoulos and P. Spindel, Three-dimensional black holes from deformed anti de Sitter, JHEP 07 (2005) 072 [hep-th/0504231] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    D. Anninos, Hopfing and puffing warped anti-de Sitter space, JHEP 09 (2009) 075 [arXiv:0809.2433] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    G. Compere, S. Detournay and M. Romo, Supersymmetric Gödel and warped black holes in string theory, Phys. Rev. D 78 (2008) 104030 [arXiv:0808.1912] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    M. Rooman and P. Spindel, Gödel metric as a squashed anti-de Sitter geometry, Class. Quant. Grav. 15 (1998) 3241 [gr-qc/9804027] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  15. [15]
    D. Israël, C. Kounnas and M.P. Petropoulos, Superstrings on NS5 backgrounds, deformed AdS 3 and holography, JHEP 10 (2003) 028 [hep-th/0306053] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M.J. Duff, H. Lü and C.N. Pope, AdS 3 × S 3 (un)twisted and squashed and an O(2, 2,Z) multiplet of dyonic strings, Nucl. Phys. B 544 (1999) 145 [hep-th/9807173] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    T.S. Levi, J. Raeymaekers, D. Van den Bleeken, W. Van Herck and B. Vercnocke, Gödel space from wrapped M2-branes, JHEP 01 (2010) 082 [arXiv:0909.4081] [SPIRES].CrossRefGoogle Scholar
  18. [18]
    M.J. Duff, S. Ferrara, R.R. Khuri and J. Rahmfeld, Supersymmetry and dual string solitons, Phys. Lett. B 356 (1995) 479 [hep-th/9506057] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    G.T. Horowitz, J.M. Maldacena and A. Strominger, Nonextremal black hole microstates and U-duality, Phys. Lett. B 383 (1996) 151 [hep-th/9603109] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    H.J. Boonstra, B. Peeters and K. Skenderis, Duality and asymptotic geometries, Phys. Lett. B 411 (1997) 59 [hep-th/9706192] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter spacetimes and dual superconformal theories, Nucl. Phys. B 533 (1998) 127 [hep-th/9803231] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    A.A. Tseytlin, Harmonic superpositions of M-branes, Nucl. Phys. B 475 (1996) 149 [hep-th/9604035] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  24. [24]
    T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    E. Bergshoeff, C.M. Hull and T. Ortín, Duality in the type-II superstring effective action, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos and P.K. Townsend, Duality of type II 7-branes and 8-branes, Nucl. Phys. B 470 (1996) 113 [hep-th/9601150] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    S.F. Hassan, T-duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys. B 568 (2000) 145 [hep-th/9907152] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    M. Cvetič, H. Lü, C.N. Pope and K.S. Stelle, T-duality in the Green-Schwarz formalism and the massless/massive IIA duality map, Nucl. Phys. B 573 (2000) 149 [hep-th/9907202] [SPIRES].ADSGoogle Scholar
  29. [29]
    R. Benichou, G. Policastro and J. Troost, T-duality in Ramond-Ramond backgrounds, Phys. Lett. B 661 (2008) 192 [arXiv:0801.1785] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    D. Orlando, String theory: exact solutions, marginal deformations and hyperbolic spaces, Fortsch. Phys. 55 (2007) 161 [hep-th/0610284] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    H. Lü, C.N. Pope and J. Rahmfeld, A construction of Killing spinors on S n, J. Math. Phys. 40 (1999) 4518 [hep-th/9805151] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  32. [32]
    D. Orlando, AdS 2 × S 2 as an exact heterotic string background, talk given at NATO Advanced Study Institute and EC Summer School on String Theory: From Gauge Interactions to Cosmology, Cargese France June 7–19 2004 [hep-th/0502213] [SPIRES].
  33. [33]
    I. Bakas and K. Sfetsos, T duality and world sheet supersymmetry, Phys. Lett. B 349 (1995) 448 [hep-th/9502065] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    K. Sfetsos, Duality and restoration of manifest supersymmetry, Nucl. Phys. B 463 (1996) 33 [hep-th/9510034] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    S.F. Hassan, T duality and nonlocal supersymmetries, Nucl. Phys. B 460 (1996) 362 [hep-th/9504148] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    R. Ricci, A.A. Tseytlin and M. Wolf, On T-duality and integrability for strings on AdS backgrounds, JHEP 12 (2007) 082 [arXiv:0711.0707] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    A. Babichenko, B. Stefanski Jr. and K. Zarembo, Integrability and the AdS 3/CFT 2 correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [SPIRES].CrossRefGoogle Scholar
  38. [38]
    M.J. Duff, H. Lü and C.N. Pope, AdS 5 × S 5 untwisted, Nucl. Phys. B 532 (1998) 181 [hep-th/9803061] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    H. Lü and C.N. Pope, p-brane solitons in maximal supergravities, Nucl. Phys. B 465 (1996) 127 [hep-th/9512012] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    H. Lü, C.N. Pope and K.S. Stelle, Weyl group invariance and p-brane multiplets, Nucl. Phys. B 476 (1996) 89 [hep-th/9602140] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    J.H. Schwarz, Covariant field equations of chiral N = 2 D = 10 supergravity, Nucl. Phys. B 226 (1983) 269 [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Institute for the Mathematics and Physics of the UniverseThe University of TokyoKashiwa-shiJapan
  2. 2.Theoretical Physics Group, The Blackett LaboratoryImperial College LondonLondonU.K.

Personalised recommendations