Searches for long lived neutral particles

  • Patrick Meade
  • Shmuel Nussinov
  • Michele Papucci
  • Tomer Volansky


An intriguing possibility for TeV scale physics is the existence of neutral long lived particles (LOLIPs) that subsequently decay into SM states. Such particles are many cases indistinguishable from missing transverse energy (MET) at colliders. We propose new methods to search for these particles using neutrino telescopes. We study their detection prospects, assuming production either at the LHC or through dark matter (DM) annihilations in the Sun and the Earth. We find that the sensitivity for LOLIPs produced at the LHC is limited by luminosity and detection energy thresholds. On the other hand, in the case of DM annihilation into LOLIPs, the sensitivity of neutrino telescopes is promising and may extend beyond the reach of upcoming direct detection experiments. In the context of low scale hidden sectors weakly coupled to the SM, such indirect searches allow to probe couplings as small as 10−15.


Beyond Standard Model Neutrino Physics Solar and Atmospheric Neutrinos Cosmology of Theories beyond the SM 


  1. [1]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].ADSGoogle Scholar
  2. [2]
    J. Kang and M.A. Luty, Macroscopic strings and ‘quirks’ at colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    C. Jacoby and S. Nussinov, The relic abundance of massive colored particles after a late hadronic annihilation stage, arXiv:0712.2681 [SPIRES].
  4. [4]
    S. Nussinov and C. Jacoby, Some comments on the ‘quirks’ scenario, arXiv:0907.4932 [SPIRES].
  5. [5]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5.100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    TheFermi LAT collaboration, A.A. Abdo et al., Measurement of the cosmic ray e + plus e spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    P. Meade, M. Papucci and T. Volansky, Dark matter sees the light, JHEP 12 (2009) 052 [arXiv:0901.2925] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    P. Meade, M. Papucci, A. Strumia and T. Volansky, Dark matter interpretations of the electron/positron excesses after FERMI, Nucl. Phys. B 831 (2010) 178 [arXiv:0905.0480] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].ADSGoogle Scholar
  10. [10]
    M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [SPIRES].ADSGoogle Scholar
  11. [11]
    N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    J.L. Feng and B.T. Smith, Slepton trapping at the Large Hadron and International Linear Colliders, Phys. Rev. D 71 (2005) 015004 [hep-ph/0409278] [SPIRES].ADSGoogle Scholar
  14. [14]
    R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [SPIRES].ADSGoogle Scholar
  15. [15]
    M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    BABAR collaboration, B. Aubert et al., Search for a narrow resonance in e + e to four lepton final states, arXiv:0908.2821 [SPIRES].
  17. [17]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [SPIRES].ADSGoogle Scholar
  18. [18]
    B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [SPIRES].ADSGoogle Scholar
  19. [19]
    J.T. Ruderman and T. Volansky, Searching for smoking gun signatures of decaying dark matter, arXiv:0907.4373 [SPIRES].
  20. [20]
    J.T. Ruderman and T. Volansky, Decaying into the hidden sector, JHEP 02 (2010) 024 [arXiv:0908.1570] [SPIRES].CrossRefGoogle Scholar
  21. [21]
    R.W. Atkins et al., Search for very high energy gamma rays from WIMP annihilations near the Sun with the Milagro detector, Phys. Rev. D 70 (2004) 083516 [SPIRES].ADSGoogle Scholar
  22. [22]
    Super-Kamiokande collaboration, S. Desai et al., Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande, Phys. Rev. D 70 (2004) 083523 [Erratum ibid. D 70 (2004) 109901] [hep-ex/0404025] [SPIRES].ADSGoogle Scholar
  23. [23]
    P. Meade, M. Papucci, M. Strassler and T. Volansky, work in progress.Google Scholar
  24. [24]
    I. Albuquerque, G. Burdman and Z. Chacko, Neutrino telescopes as a direct probe of supersymmetry breaking, Phys. Rev. Lett. 92 (2004) 221802 [hep-ph/0312197] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    M. Ahlers, J. Kersten and A. Ringwald, Long-lived staus at neutrino telescopes, JCAP 07 (2006) 005 [hep-ph/0604188] [SPIRES].ADSGoogle Scholar
  26. [26]
    M.H. Reno, I. Sarcevic and J. Uscinski, Cosmogenic neutrinos and quasi-stable supersymmetric particle production, Phys. Rev. D 76 (2007) 125030 [arXiv:0710.4954] [SPIRES].ADSGoogle Scholar
  27. [27]
    H.K. Dreiner, An introduction to explicit R-parity violation, hep-ph/9707435 [SPIRES].
  28. [28]
    B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [SPIRES].ADSGoogle Scholar
  29. [29]
    CDMS collaboration, Z. Ahmed et al., Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102 (2009) 011301 [arXiv:0802.3530] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    The IceCube collaboration, J. Ahrens et al., IceCube: the next generation neutrino telescope at the South Pole, Nucl. Phys. Proc. Suppl. 118 (2003) 388 [astro-ph/0209556] [SPIRES].CrossRefGoogle Scholar
  32. [32]
  33. [33]
    KM3NeT collaboration, The KM3NeT conceptual design report,
  34. [34]
    Super-Kamiokande collaboration, S. Desai et al., Study of TeV Neutrinos with upward showering muons in Super-Kamiokande, Astropart. Phys. 29 (2008) 42 [arXiv:0711.0053] [SPIRES].ADSGoogle Scholar
  35. [35]
    M.C. Gonzalez-Garcia, F. Halzen and M. Maltoni, Physics reach of high-energy and high-statistics IceCube atmospheric neutrino data, Phys. Rev. D 71 (2005) 093010 [hep-ph/0502223] [SPIRES].ADSGoogle Scholar
  36. [36]
    C. Wiebusch and f.t.I. Collaboration, Physics capabilities of the IceCube DeepCore detector, arXiv:0907.2263 [SPIRES].
  37. [37]
  38. [38]
    M.L. Mangano, The super-LHC, arXiv:0910.0030 [SPIRES].
  39. [39]
    A. Gould, Resonant enhancements in WIMP capture by the Earth, Astrophys. J. 321 (1987) 571 [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    K. Griest and D. Seckel, Cosmic asymmetry, neutrinos and the Sun, Nucl. Phys. B 283 (1987) 681 [Erratum ibid. B 296 (1988) 1034] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].ADSGoogle Scholar
  43. [43]
    Y. Bai and P.J. Fox, Resonant dark matter, JHEP 11 (2009) 052 [arXiv:0909.2900] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    B. Feldstein, A.L. Fitzpatrick and E. Katz, Form factor dark matter, JCAP 01 (2010) 020 [arXiv:0908.2991] [SPIRES].ADSGoogle Scholar
  45. [45]
    S. Chang, A. Pierce and N. Weiner, Momentum dependent dark matter scattering, JCAP 01 (2010) 006 [arXiv:0908.3192] [SPIRES].ADSGoogle Scholar
  46. [46]
    S. Nussinov, L.-T. Wang and I. Yavin, Capture of inelastic dark matter in the Sun, JCAP 08 (2009) 037 [arXiv:0905.1333] [SPIRES].ADSGoogle Scholar
  47. [47]
    A. Menon, R. Morris, A. Pierce and N. Weiner, Capture and indirect detection of inelastic dark matter, arXiv:0905.1847 [SPIRES].
  48. [48]
    N. Giglietto, Sources in the solar system observed by the Fermi Large Area Telescope, talk given at TeV Particle Astrophysics 2009, July 13–17, SLAC, Stanford, U.S.A. (2009).Google Scholar
  49. [49]
    M. Honda, T. Kajita, K. Kasahara, S. Midorikawa and T. Sanuki, Calculation of atmospheric neutrino ux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75 (2007) 043006 [astro-ph/0611418] [SPIRES].ADSGoogle Scholar
  50. [50]
    J. Hisano, K. Nakayama and M.J.S. Yang, Upward muon signals at neutrino detectors as a probe of dark matter properties, Phys. Lett. B 678 (2009) 101 [arXiv:0905.2075] [SPIRES].ADSGoogle Scholar
  51. [51]
    IceCube collaboration, J. Ahrens et al., IceCube preliminary design document,
  52. [52]
    C. Delaunay, P.J. Fox and G. Perez, Probing dark matter dynamics via earthborn neutrinos at IceCube, JHEP 05 (2009) 099 [arXiv:0812.3331] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    B. Batell, M. Pospelov, A. Ritz and Y. Shang, Solar gamma rays powered by secluded dark matter, Phys. Rev. D 81 (2010) 075004 [arXiv:0910.1567] [SPIRES].ADSGoogle Scholar
  54. [54]
    P. Schuster, N. Toro and I. Yavin, Terrestrial and solar limits on long-lived particles in a dark sector, Phys. Rev. D 81 (2010) 016002 [arXiv:0910.1602] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Patrick Meade
    • 1
    • 2
  • Shmuel Nussinov
    • 3
    • 4
  • Michele Papucci
    • 5
  • Tomer Volansky
    • 5
  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  3. 3.Tel Aviv University, Sackler School Faculty of SciencesTel AvivIsrael
  4. 4.Schmid Science Center Chapman UniversityOrangeU.S.A.
  5. 5.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations