Advertisement

Radiative electroweak symmetry breaking in a Little Higgs model

  • Roshan Foadi
  • James T. Laverty
  • Carl R. Schmidt
  • Jiang-Hao Yu
Article

Abstract

We present a new Little Higgs model, motivated by the deconstruction of a five-dimensional gauge-Higgs model. The approximate global symmetry is SO(5)0 × SO(5)1, breaking to SO(5), with a gauged subgroup of [SU(2)0L × U(1)0R ] × O(4)1, breaking to SU(2) L ×U(1) Y . Radiative corrections produce an additional small vacuum misalignment, breaking the electroweak symmetry down to U(1)EM. Novel features of this model are: the only un-eaten pseudo-Goldstone boson in the effective theory is the Higgs boson; the model contains a custodial symmetry, which ensures that \( \widehat{T} = 0 \) at tree-level; and the potential for the Higgs boson is generated entirely through one-loop radiative corrections. A small negative mass-squared in the Higgs potential is obtained by a cancellation between the contribution of two heavy partners of the top quark, which is readily achieved over much of the parameter space. We can then obtain both a vacuum expectation value of v = 246 GeV and a light Higgs boson mass, which is strongly correlated with the masses of the two heavy top quark partners. For a scale of the global symmetry breaking of f = 1 TeV and using a single cutoff for the fermion loops, the Higgs boson mass satisfies 120 GeV ≲ M H ≲ 150 GeV over much of the range of parameter space. For f raised to 10 TeV, these values increase by about 40 GeV. Effects at the ultraviolet cutoff scale may also raise the predicted values of the Higgs boson mass, but the model still favors M H ≲ 200GeV.

Keywords

Spontaneous Symmetry Breaking Beyond Standard Model 

References

  1. [1]
    H. Georgi and A. Pais, Calculability and Naturalness in Gauge Theories, Phys. Rev. D 10 (1974) 539 [SPIRES].ADSGoogle Scholar
  2. [2]
    H. Georgi and A. Pais, Vacuum Symmetry and the PseudoGoldstone Phenomenon, Phys. Rev. D 12 (1975) 508 [SPIRES].ADSGoogle Scholar
  3. [3]
    N. Arkani-Hamed, A.G. Cohen, T. Gregoire and J.G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, JHEP 08 (2002) 020 [hep-ph/0202089] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    N. Arkani-Hamed et al., The Minimal Moose for a Little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    T. Gregoire and J.G. Wacker, Mooses, Topology and Higgs, JHEP 08 (2002) 019 [hep-ph/0206023] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    I. Low, W. Skiba and D. Tucker-Smith, Little Higgses from an antisymmetric condensate, Phys. Rev. D 66 (2002) 072001 [hep-ph/0207243] [SPIRES].ADSGoogle Scholar
  8. [8]
    M. Schmaltz, Physics beyond the standard model (Theory): Introducing the little Higgs, Nucl. Phys. Proc. Suppl. 117 (2003) 40 [hep-ph/0210415] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    D.E. Kaplan and M. Schmaltz, The little Higgs from a simple group, JHEP 10 (2003) 039 [hep-ph/0302049] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    S. Chang and J.G. Wacker, Little Higgs and custodial SU(2), Phys. Rev. D 69 (2004) 035002 [hep-ph/0303001] [SPIRES].ADSGoogle Scholar
  11. [11]
    W. Skiba and J. Terning, A simple model of two little Higgses, Phys. Rev. D 68 (2003) 075001 [hep-ph/0305302] [SPIRES].ADSGoogle Scholar
  12. [12]
    S. Chang, A ’littlest Higgs’ model with custodial SU(2) symmetry, JHEP 12 (2003) 057 [hep-ph/0306034] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    E. Katz, J.-y. Lee, A.E. Nelson and D.G.E. Walker, A composite little Higgs model, JHEP 10 (2005) 088 [hep-ph/0312287] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    A. Birkedal, Z. Chacko and M.K. Gaillard, Little supersymmetry and the supersymmetric little hierarchy problem, JHEP 10 (2004) 036 [hep-ph/0404197] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    D.E. Kaplan, M. Schmaltz and W. Skiba, Little Higgses and turtles, Phys. Rev. D 70 (2004) 075009 [hep-ph/0405257] [SPIRES].ADSGoogle Scholar
  19. [19]
    M. Schmaltz, The simplest little Higgs, JHEP 08 (2004) 056 [hep-ph/0407143] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    I. Low, T parity and the littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    K. Agashe, R. Contino and A. Pomarol, The Minimal Composite Higgs Model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    P. Batra and D.E. Kaplan, Perturbative, non-supersymmetric completions of the little Higgs, JHEP 03 (2005) 028 [hep-ph/0412267] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    J. Thaler and I. Yavin, The littlest Higgs in anti-de Sitter space, JHEP 08 (2005) 022 [hep-ph/0501036] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [SPIRES].ADSGoogle Scholar
  25. [25]
    M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    J. Hubisz and P. Meade, Phenomenology of the littlest Higgs with T-parity, Phys. Rev. D 71 (2005) 035016 [hep-ph/0411264] [SPIRES].ADSGoogle Scholar
  27. [27]
    A. Belyaev, C.-R. Chen, K. Tobe and C.P. Yuan, Phenomenology of littlest Higgs model with T parity: including effects of T odd fermions, Phys. Rev. D 74 (2006) 115020 [hep-ph/0609179] [SPIRES].ADSGoogle Scholar
  28. [28]
    J.A. Casas, J.R. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. II: Little Higgs models, JHEP 03 (2005) 038 [hep-ph/0502066] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].ADSGoogle Scholar
  30. [30]
    A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs Unification and Radiative Electroweak Symmetry Breaking in Warped Extra Dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [SPIRES].ADSGoogle Scholar
  31. [31]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Z b anti-b, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].ADSGoogle Scholar
  32. [32]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES].ADSGoogle Scholar
  33. [33]
    B. Grinstein, R. Kelley and P. Uttayarat, Hidden fine tuning in the quark sector of little Higgs models, JHEP 09 (2009) 040 [arXiv:0904.1622] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    R. Barbieri and G.F. Giudice, Upper Bounds On Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 063 [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    R. Sekhar Chivukula, S. Di Chiara, R. Foadi and E.H. Simmons, The Limits of Custodial Symmetry, Phys. Rev. D 80 (2009) 095001 [arXiv:0908.1079] [SPIRES].ADSGoogle Scholar
  36. [36]
    R. Foadi, J.T. Laverty, C.R. Schmidt, and J. Yu, in preparation.Google Scholar
  37. [37]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza-Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [SPIRES].ADSGoogle Scholar
  39. [39]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    R.S. Chivukula, E.H. Simmons, H.-J. He, M. Kurachi and M. Tanabashi, Universal non-oblique corrections in Higgsless models and beyond, Phys. Lett. B 603 (2004) 210 [hep-ph/0408262] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Roshan Foadi
    • 1
  • James T. Laverty
    • 1
  • Carl R. Schmidt
    • 1
  • Jiang-Hao Yu
    • 1
  1. 1.Department of Physics and AstronomyMichigan State UniversityEast LansingU.S.A.

Personalised recommendations