Advertisement

Scaled momentum spectra in deep inelastic scattering at HERA

  • ZEUS collaboration
  • H. Abramowicz
  • I. Abt
  • L. Adamczyk
  • M. Adamus
  • S. Antonelli
  • P. Antonioli
  • A. Antonov
  • M. Arneodo
  • V. Aushev
  • Y. Aushev
  • O. Bachynska
  • A. Bamberger
  • A. N. Barakbaev
  • G. Barbagli
  • G. Bari
  • F. Barreiro
  • D. Bartsch
  • M. Basile
  • O. Behnke
  • J. Behr
  • U. Behrens
  • L. Bellagamba
  • A. Bertolin
  • S. Bhadra
  • M. Bindi
  • C. Blohm
  • T. Bołd
  • E. G. Boos
  • M. Borodin
  • K. Borras
  • D. Boscherini
  • D. Bot
  • S. K. Boutle
  • I. Brock
  • E. Brownson
  • R. Brugnera
  • N. Brümmer
  • A. Bruni
  • G. Bruni
  • B. Brzozowska
  • P. J. Bussey
  • J. M. Butterworth
  • B. Bylsma
  • A. Caldwell
  • M. Capua
  • R. Carlin
  • C. D. Catterall
  • S. Chekanov
  • J. Chwastowski
  • J. Ciborowski
  • R. Ciesielski
  • L. Cifarelli
  • F. Cindolo
  • A. Contin
  • A. M. Cooper-Sarkar
  • N. Coppola
  • M. Corradi
  • F. Corriveau
  • M. Costa
  • G. D’Agostini
  • F. Dal Corso
  • J. de Favereau
  • J. del Peso
  • R. K. Dementiev
  • S. De Pasquale
  • M. Derrick
  • R. C. E. Devenish
  • D. Dobur
  • B. A. Dolgoshein
  • A. T. Doyle
  • V. Drugakov
  • L. S. Durkin
  • S. Dusini
  • Y. Eisenberg
  • P. F. Ermolov
  • A. Eskreys
  • S. Fang
  • S. Fazio
  • J. Ferrando
  • M. I. Ferrero
  • J. Figiel
  • M. Forrest
  • S. Fourletov
  • A. Galas
  • E. Gallo
  • A. Garfagnini
  • A. Geiser
  • I. Gialas
  • L. K. Gladilin
  • D. Gladkov
  • C. Glasman
  • O. Gogota
  • Yu. A. Golubkov
  • P. Göttlicher
  • I. Grabowska-Bołd
  • J. Grebenyuk
  • I. Gregor
  • G. Grigorescu
  • G. Grzelak
  • C. Gwenlan
  • T. Haas
  • W. Hain
  • R. Hamatsu
  • J. C. Hart
  • H. Hartmann
  • G. Hartner
  • E. Hilger
  • D. Hochman
  • U. Holm
  • R. Hori
  • K. Horton
  • A. Hüttmann
  • Z. A. Ibrahim
  • Y. Iga
  • R. Ingbir
  • M. Ishitsuka
  • H.-P. Jakob
  • F. Januschek
  • M. Jimenez
  • T. W. Jones
  • M. Jüngst
  • I. Kadenko
  • B. Kahle
  • B. Kamaluddin
  • S. Kananov
  • T. Kanno
  • U. Karshon
  • F. Karstens
  • I. I. Katkov
  • M. Kaur
  • P. Kaur
  • A. Keramidas
  • L. A. Khein
  • J. Y. Kim
  • D. Kisielewska
  • S. Kitamura
  • R. Klanner
  • U. Klein
  • E. Koffeman
  • D. Kollar
  • P. Kooijman
  • Ie. Korol
  • A. Kotański
  • U. Kötz
  • H. Kowalski
  • P. Kulinski
  • O. Kuprash
  • M. Kuze
  • V. A. Kuzmin
  • A. Lee
  • B. B. Levchenko
  • A. Levy
  • V. Libov
  • S. Limentani
  • T. Y. Ling
  • M. Lisovyi
  • W. Lohmann
  • B. Löhr
  • E. Lohrmann
  • J. H. Loizides
  • K. R. Long
  • A. Longhin
  • D. Lontkovskyi
  • J. Łukasik
  • O. Yu. Lukina
  • P. Łużniak
  • J. Maeda
  • S. Magill
  • I. Makarenko
  • J. Malka
  • R. Mankel
  • A. Margotti
  • G. Marini
  • J. F. Martin
  • A. Mastroberardino
  • T. Matsumoto
  • M. C. K. Mattingly
  • F. Mohamad Idris
  • V. Monaco
  • A. Montanari
  • J. D. Morris
  • B. Musgrave
  • K. Nagano
  • T. Namsoo
  • R. Nania
  • D. Nicholass
  • A. Nigro
  • Y. Ning
  • U. Noor
  • D. Notz
  • R. J. Nowak
  • B. Y. Oh
  • N. Okazaki
  • K. Oliver
  • K. Olkiewicz
  • O. Ota
  • K. Papageorgiu
  • E. Paul
  • J. M. Pawlak
  • B. Pawlik
  • P. G. Pelfer
  • A. Pellegrino
  • W. Perlanski
  • H. Perrey
  • K. Piotrzkowski
  • P. Plucinski
  • N. S. Pokrovskiy
  • A. Polini
  • A. S. Proskuryakov
  • A. Raval
  • D. D. Reeder
  • B. Reisert
  • Z. Ren
  • Y. D. Ri
  • A. Robertson
  • P. Roloff
  • E. Ron
  • I. Rubinsky
  • M. Ruspa
  • R. Sacchi
  • A. Salii
  • U. Samson
  • G. Sartorelli
  • A. A. Savin
  • D. H. Saxon
  • M. Schioppa
  • P. Schleper
  • W. B. Schmidke
  • V. Schönberg
  • J. Schwartz
  • F. Sciulli
  • L. M. Shcheglova
  • R. Shehzadi
  • S. Shimizu
  • I. Singh
  • I. O. Skillicorn
  • W. Słomiński
  • W. H. Smith
  • V. Sola
  • A. Solano
  • A. Solomin
  • D. Son
  • V. Sosnovtsev
  • A. Spiridonov
  • H. Stadie
  • L. Stanco
  • A. Stern
  • T.P. Stewart
  • A. Stifutkin
  • P. Stopa
  • S. Suchkov
  • G. Susinno
  • L. Suszycki
  • J. Sztuk
  • D. Szuba
  • J. Szuba
  • A. D. Tapper
  • E. Tassi
  • J. Terrón
  • T. Theedt
  • H. Tiecke
  • K. Tokushuku
  • O. Tomalak
  • J. Tomaszewska
  • T. Tsurugai
  • M. Turcato
  • T. Tymieniecka
  • M. Vázquez
  • A. Verbytskyi
  • V. Viazlo
  • N. N. Vlasov
  • O. Volynets
  • R. Walczak
  • W. A. T. Wan Abdullah
  • J. J. Whitmore
  • J. Whyte
  • M. Wing
  • M. Wlasenko
  • G. Wolf
  • H. Wolfe
  • K. Wrona
  • S. Yamada
  • Y. Yamazaki
  • R. Yoshida
  • C. Youngman
  • A. F. Żarnecki
  • O. Zenaiev
  • B. O. Zhautykov
  • N. Zhmak
  • C. Zhou
  • A. Zichichi
  • M. Zolko
  • D. S. Zotkin
Open Access
Article

Abstract

Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb−1. Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution of these spectra with the photon virtuality, Q 2, is described in the kinematic region 10 < Q 2 < 41000Ge V2. Next-to-leading-order and modified leading-log-approximation QCD calculations as well as predictions from Monte Carlo models are compared to the data. The results are also compared to e + e annihilation data. The dependences of the pseudorapidity distribution of the particles on Q 2 and on the energy in the γp system, W, are presented and interpreted in the context of the hypothesis of limiting fragmentation.

Keywords

Lepton-Nucleon Scattering 

References

  1. [1]
    ZEUS collaboration, M. Derrick et al., Measurement of multiplicity and momentum spectra in the current fragmentation region of the Breit frame at HERA, Z. Phys. C 67 (1995) 93 [hep-ex/9501012] [SPIRES].ADSGoogle Scholar
  2. [2]
    ZEUS collaboration, J. Breitweg et al., Observation of scaling violations in scaled momentum distributions at HERA, Phys. Lett. B 414 (1997) 428 [hep-ex/9710011] [SPIRES].ADSGoogle Scholar
  3. [3]
    ZEUS collaboration, J. Breitweg et al., Measurement of multiplicity and momentum spectra in the current and target regions of the Breit frame in deep inelastic scattering at HERA, Eur. Phys. J. C 11 (1999) 251 [hep-ex/9903056] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    H1 collaboration, F.D. Aaron et al., Charged particle production in high Q 2 deep-inelastic scattering at HERA, Phys. Lett. B 654 (2007) 148 [arXiv:0706.2456] [SPIRES].ADSGoogle Scholar
  5. [5]
    G. Altarelli, R.K. Ellis, G. Martinelli and S.-Y. Pi, Processes involving fragmentation functions beyond the leading order in QCD, Nucl. Phys. B 160 (1979) 301 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    P. Nason and B.R. Webber, Scaling violation in e + e fragmentation functions: QCD evolution, hadronization and heavy quark mass effects, Nucl. Phys. B 421 (1994) 473 [Erratum ibid. B 480 (1996) 755] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    C.P. Fong and B.R. Webber, Higher order QCD corrections to hadron energy distributions in jets, Phys. Lett. B 229 (1989) 289 [SPIRES].ADSGoogle Scholar
  8. [8]
    C.P. Fong and B.R. Webber, One and two particle distributions at small x in QCD jets, Nucl. Phys. B 355 (1991) 54 [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    Y.L. Dokshitzer, V.A. Khoze and S.I. Troian, Inclusive particle spectra from QCD cascades, Int. J. Mod. Phys. A 7 (1992) 1875 [SPIRES].ADSGoogle Scholar
  10. [10]
    Y.I. Dokshitzer et al., Basics of perturbative QCD, Editions Frontiéres, Gif-sur-Yvette France (1991), pg. 169.Google Scholar
  11. [11]
    Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze and S.I. Troyan, Similarity of parton and hadron spectra in QCD jets, Z. Phys. C 27 (1985) 65 [SPIRES].ADSGoogle Scholar
  12. [12]
    S. Kretzer, Fragmentation functions from flavour-inclusive and flavour-tagged e + e annihilations, Phys. Rev. D 62 (2000) 054001 [hep-ph/0003177] [SPIRES].ADSGoogle Scholar
  13. [13]
    B.A. Kniehl, G. Kramer and B. Pötter, Strong coupling constant from scaling violations in fragmentation functions, Phys. Rev. Lett. 85 (2000) 5288 [hep-ph/0003297] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    S. Albino, B.A. Kniehl and G. Kramer, Fragmentation functions for light charged hadrons with complete quark flavour separation, Nucl. Phys. B 725 (2005) 181 [hep-ph/0502188] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    S. Albino, B.A. Kniehl and G. Kramer, AKK update: improvements from new theoretical input and experimental data, Nucl. Phys. B 803 (2008) 42 [arXiv:0803.2768] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    D. de Florian, R. Sassot and M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties, Phys. Rev. D 75 (2007) 114010 [hep-ph/0703242] [SPIRES].ADSGoogle Scholar
  17. [17]
    D. de Florian, R. Sassot and M. Stratmann, Global analysis of fragmentation functions for protons and charged hadrons, Phys. Rev. D 76 (2007) 074033 [arXiv:0707.1506] [SPIRES].ADSGoogle Scholar
  18. [18]
    V.A. Khoze and W. Ochs, Perturbative QCD approach to multiparticle production, Int. J. Mod. Phys. A 12 (1997) 2949 [hep-ph/9701421] [SPIRES].ADSGoogle Scholar
  19. [19]
    V.A. Khoze, S. Lupia and W. Ochs, Perturbative description of particle spectra at LEP-1.5, Phys. Lett. B 386 (1996) 451 [hep-ph/9604410] [SPIRES].ADSGoogle Scholar
  20. [20]
    A. Petersen et al., Multi-hadronic events at E c.m. = 29 GeV and predictions of QCD models from E c.m. = 29 GeV to E c.m. = 93 GeV, Phys. Rev. D 37 (1988) 1 [SPIRES].ADSGoogle Scholar
  21. [21]
    TASSO collaboration, W. Braunschweig et al., Global jet properties at 14 GeV to 44 GeV center-of-mass energy in e + e annihilation, Z. Phys. C 47 (1990) 187 [SPIRES].Google Scholar
  22. [22]
    AMY collaboration, Y.K. Li et al., Multi-hadron event properties in e + e annihilation ats = 52 GeV to 57 GeV, Phys. Rev. D 41 (1990) 2675 [SPIRES].ADSGoogle Scholar
  23. [23]
    DELPHI collaboration, P. Abreu et al., Determination of αs from the scaling violation in the fragmentation functions in e + e annihilation, Phys. Lett. B 311 (1993) 408 [SPIRES].ADSGoogle Scholar
  24. [24]
    ZEUS collaboration, S. Chekanov et al., Energy dependence of the charged multiplicity in deep inelastic scattering at HERA, JHEP 06 (2008) 061 [arXiv:0803.3878] [SPIRES].Google Scholar
  25. [25]
    J. Benecke et al., Hypothesis of limiting fragmentation in high-energy collisions, Phys. Rev. 188 (1969) 2159 [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    PHOBOS collaboration, B.B. Back et al., Charged-particle pseudorapidity distributions in Au+Au collisions at s 1/2 NN = 62.4 GeV, Phys. Rev. C 74 (2006) 021901 [nucl-ex/0509034] [SPIRES].ADSGoogle Scholar
  27. [27]
    STAR collaboration, J. Adams et al., Multiplicity and pseudorapidity distributions of charged particles and photons at forward pseudorapidity in Au + Au collisions at s 1/2 NN = 62.4 GeV, Phys. Rev. C 73 (2006) 034906 [nucl-ex/0511026] [SPIRES].ADSGoogle Scholar
  28. [28]
    PHOBOS collaboration, B.B. Back et al., The significance of the fragmentation region in ultrarelativistic heavy ion collisions, Phys. Rev. Lett. 91 (2003) 052303 [nucl-ex/0210015] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    BRAHMS collaboration, I.G. Bearden et al., Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy, Phys. Rev. Lett. 88 (2002) 202301 [nucl-ex/0112001] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    BRAHMS collaboration, I.G. Bearden et al., Charged particle densities from Au + Au collisions at s 1/2 NN = 130 GeV, Phys. Lett. B 523 (2001) 227 [nucl-ex/0108016] [SPIRES].Google Scholar
  31. [31]
    ZEUS collaboration, U. Holm ed., The ZEUS detector, status report, unpublished, available on http://www-zeus.desy.de/bluebook/bluebook.html, DESY Germany (1993).
  32. [32]
    N. Harnew et al., Vertex triggering using time difference measurements in the ZEUS central tracking detector, Nucl. Instrum. Meth. A 279 (1989) 290 [SPIRES].ADSGoogle Scholar
  33. [33]
    B. Foster et al., The performance of the ZEUS central tracking detector z-by-timing electronics in a transputer based data acquisition system, Nucl. Phys. (Proc. Suppl.) B 32 (1993) 181 [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    ZEUS collaboration, B. Foster et al., The design and construction of the ZEUS central tracking detector, Nucl. Instrum. Meth. A 338 (1994) 254 [SPIRES].ADSGoogle Scholar
  35. [35]
    ZEUS collaboration, A. Polini et al., The design and performance of the ZEUS micro vertex detector, Nucl. Instrum. Meth. A 581 (2007) 656 [arXiv:0708.3011] [SPIRES].ADSGoogle Scholar
  36. [36]
    M. Derrick et al., Design and construction of the ZEUS barrel calorimeter, Nucl. Instrum. Meth. A 309 (1991) 77 [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    ZEUS Calorimeter Group collaboration, A. Andresen et al., Construction and beam test of the ZEUS forward and rear calorimeter, Nucl. Instrum. Meth. A 309 (1991) 101 [SPIRES].ADSGoogle Scholar
  38. [38]
    A. Caldwell et al., Design and implementation of a high precision readout system for the ZEUS calorimeter, Nucl. Instrum. Meth. A 321 (1992) 356 [SPIRES].ADSGoogle Scholar
  39. [39]
    ZEUS Barrel Calorimeter Group collaboration, A. Bernstein et al., Beam tests of the ZEUS barrel calorimeter, Nucl. Instrum. Meth. A 336 (1993) 23 [SPIRES].ADSGoogle Scholar
  40. [40]
    ZEUS collaboration, A. Bamberger et al., The small angle rear tracking detector of ZEUS, Nucl. Instrum. Meth. A 401 (1997) 63 [SPIRES].ADSGoogle Scholar
  41. [41]
    ZEUS Presampler Group collaboration, A. Bamberger et al., The presampler for the forward and rear calorimeter in the ZEUS detector, Nucl. Instrum. Meth. A 382 (1996) 419 [hep-ex/9609006] [SPIRES].ADSGoogle Scholar
  42. [42]
    ZEUS Luminosity Group collaboration, J. Andruszków et al., First measurement of HERA luminosity by ZEUS lumi monitor, preprint DESY-92-066, DESY, Germany (1992) [SPIRES].
  43. [43]
    ZEUS collaboration, M. Derrick et al., Measurement of total and partial photon proton cross-sections at 180GeV center-of-mass energy, Z. Phys. C 63 (1994) 391 [SPIRES].ADSGoogle Scholar
  44. [44]
    ZEUS Luminosity Group collaboration, J. Andruszkow et al., Luminosity measurement in the ZEUS experiment, Acta Phys. Polon. B 32 (2001) 2025 [SPIRES].ADSGoogle Scholar
  45. [45]
    M. Helbich et al., The spectrometer system for measuring ZEUS luminosity at HERA, Nucl. Instrum. Meth. A 565 (2006) 572 [physics/0512153] [SPIRES].ADSGoogle Scholar
  46. [46]
    W.H. Smith, K. Tokushuku and L.W. Wiggers, The ZEUS trigger system, in Proceedings of Computing in High Energy Physics (CHEP 92), Annecy France September 21–25 1992, C. Verkerk and W. Wojcik eds., CERN, Geneva Switzerland (1992), pg. 222 [DESY-92-150B] [SPIRES].
  47. [47]
    P.D. Allfrey et al., The design and performance of the ZEUS global tracking trigger, Nucl. Instrum. Meth. A 580 (2007) 1257 [SPIRES].ADSGoogle Scholar
  48. [48]
    H. Abramowicz, A. Caldwell and R. Sinkus, Neural network based electron identification in the ZEUS calorimeter, Nucl. Instrum. Meth. A 365 (1995) 508 [hep-ex/9505004] [SPIRES].ADSGoogle Scholar
  49. [49]
    S. Bentvelsen, J. Engelen and P. Kooijman, Reconstruction of (x,Q 2) and extraction of structure functions in neutral current scattering at HERA, in Proceedings of Workshop on Physics at HERA, W. Buchmüller and G. Ingelman eds., volume 1, DESY, Hamburg Germany (1992) [NIKHEF-H-92-02] [SPIRES].
  50. [50]
    B. Brzozowska, Scaled momentum spectra in deep inelastic scattering at HERA, thesis, to be published, University of Warsaw, Warsaw Poland (2010).Google Scholar
  51. [51]
    F. Jacquet and A. Blondel, Detection of the charged current event — method II, in Proceedings of the Study for an ep Facility for Europe, U. Amaldi ed., Hamburg Germany (1979), pg. 391 [DESY-79-48] [SPIRES].
  52. [52]
    S. Albino, B.A. Kniehl, G. Kramer and C. Sandoval, Confronting fragmentation function universality with single hadron inclusive production at HERA and e + e colliders, Phys. Rev. D 75 (2007) 034018 [hep-ph/0611029] [SPIRES].ADSGoogle Scholar
  53. [53]
    A. Bassetto, M. Ciafaloni, G. Marchesini and A.H. Mueller, Jet multiplicity and soft gluon factorization, Nucl. Phys. B 207 (1982) 189 [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    A.H. Mueller, Multiplicity and hadron distributions in QCD jets: nonleading terms, Nucl. Phys. B 213 (1983) 85 [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    B.R. Webber, A QCD model for jet fragmentation including soft gluon interference, Nucl. Phys. B 238 (1984) 492 [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    ZEUS collaboration, S. Chekanov et al., Scaled momentum distributions of charged particles in dijet photoproduction at HERA, JHEP 08 (2009) 077 [arXiv:0904.3466] [SPIRES].Google Scholar
  57. [57]
    L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    G. Gustafson and U. Pettersson, Dipole formulation of QCD cascades, Nucl. Phys. B 306 (1988) 746 [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    G. Ingelman, A. Edin and J. Rathsman, LEPTO 6.5 — a Monte Carlo generator for deep inelastic lepton-nucleon scattering, Comput. Phys. Commun. 101 (1997) 108 [hep-ph/9605286] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    K. Charchula, G.A. Schuler and H. Spiesberger, Combined QED and QCD radiative effects in deep inelastic lepton-proton scattering: the Monte Carlo generator DJANGO6, Comput. Phys. Commun. 81 (1994) 381 [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    A. Kwiatkowski, H. Spiesberger and H.J. Möhring, Heracles: an event generator for e p interactions at HERA energies including radiative processes: version 1.0, Comp. Phys. Commun. 69 (1992) 155 [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rept. 97 (1983) 31 [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    H.-U. Bengtsson and T. Sjöstrand, The Lund Monte Carlo for hadronic processes: PYTHIA version 4.8, Comput. Phys. Commun. 46 (1987) 43 [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    T. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4, Comput. Phys. Commun. 82 (1994) 74 [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    R. Brun et al., GEANT3, technical report CERN-DD/EE/84-1, CERN, Geneva Switzerland (1987) [SPIRES].
  66. [66]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  67. [67]
    P. Dixon, D. Kant and G. Thompson, Fragmentation function scaling violations in the Breit frame, J. Phys. G 25 (1999) 1453 [SPIRES].ADSGoogle Scholar
  68. [68]
    P. Deines-Jones et al., Charged particle production in the Pb + Pb system at 158 GeV/c per nucleon, Phys. Rev. C 62 (2000) 014903 [hep-ex/9912008] [SPIRES].ADSGoogle Scholar
  69. [69]
    UA5 collaboration, G.J. Alner et al., Scaling of pseudorapidity distributions at c.m. energies up to 0.9 TeV, Z. Phys. C 33 (1986) 1 [SPIRES].ADSGoogle Scholar
  70. [70]
    B.B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [SPIRES].ADSGoogle Scholar
  71. [71]
    A. Bialas and M. Jezabek, Bremsstrahlung from colour charges as a source of soft particle production in hadronic collisions, Phys. Lett. B 590 (2004) 233 [hep-ph/0403254] [SPIRES].ADSGoogle Scholar
  72. [72]
    T. Tymieniecka and B. Brzozowska, Limiting fragmentation in e + e annihilation and ep deep inelastic scattering, Acta Phys. Polon. B 40 (2009) 2175 [SPIRES].ADSGoogle Scholar
  73. [73]
    Spin Muon (SMC) collaboration, B. Adeva et al., Spin asymmetries for events with high p T hadrons in DIS and an evaluation of the gluon polarization, Phys. Rev. D 70 (2004) 012002 [hep-ex/0402010] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • ZEUS collaboration
  • H. Abramowicz
    • 44
  • I. Abt
    • 34
  • L. Adamczyk
    • 13
  • M. Adamus
    • 53
  • S. Antonelli
    • 4
  • P. Antonioli
    • 3
  • A. Antonov
    • 32
  • M. Arneodo
    • 49
  • V. Aushev
    • 26
  • Y. Aushev
    • 26
  • O. Bachynska
    • 15
  • A. Bamberger
    • 19
  • A. N. Barakbaev
    • 25
  • G. Barbagli
    • 17
  • G. Bari
    • 3
  • F. Barreiro
    • 29
  • D. Bartsch
    • 5
  • M. Basile
    • 4
  • O. Behnke
    • 15
  • J. Behr
    • 15
  • U. Behrens
    • 15
  • L. Bellagamba
    • 3
  • A. Bertolin
    • 38
  • S. Bhadra
    • 56
  • M. Bindi
    • 4
  • C. Blohm
    • 15
  • T. Bołd
    • 13
  • E. G. Boos
    • 25
  • M. Borodin
    • 26
  • K. Borras
    • 15
  • D. Boscherini
    • 3
  • D. Bot
    • 15
  • S. K. Boutle
    • 51
  • I. Brock
    • 5
  • E. Brownson
    • 55
  • R. Brugnera
    • 39
  • N. Brümmer
    • 36
  • A. Bruni
    • 3
  • G. Bruni
    • 3
  • B. Brzozowska
    • 52
  • P. J. Bussey
    • 20
  • J. M. Butterworth
    • 51
  • B. Bylsma
    • 36
  • A. Caldwell
    • 34
  • M. Capua
    • 8
  • R. Carlin
    • 39
  • C. D. Catterall
    • 56
  • S. Chekanov
    • 1
  • J. Chwastowski
    • 12
  • J. Ciborowski
    • 52
  • R. Ciesielski
    • 15
  • L. Cifarelli
    • 4
  • F. Cindolo
    • 3
  • A. Contin
    • 4
  • A. M. Cooper-Sarkar
    • 37
  • N. Coppola
    • 15
  • M. Corradi
    • 3
  • F. Corriveau
    • 30
  • M. Costa
    • 48
  • G. D’Agostini
    • 42
  • F. Dal Corso
    • 38
  • J. de Favereau
    • 28
  • J. del Peso
    • 29
  • R. K. Dementiev
    • 33
  • S. De Pasquale
    • 4
  • M. Derrick
    • 1
  • R. C. E. Devenish
    • 37
  • D. Dobur
    • 19
  • B. A. Dolgoshein
    • 32
  • A. T. Doyle
    • 20
  • V. Drugakov
    • 16
  • L. S. Durkin
    • 36
  • S. Dusini
    • 38
  • Y. Eisenberg
    • 54
  • P. F. Ermolov
    • 33
  • A. Eskreys
    • 12
  • S. Fang
    • 15
  • S. Fazio
    • 8
  • J. Ferrando
    • 37
  • M. I. Ferrero
    • 48
  • J. Figiel
    • 12
  • M. Forrest
    • 20
  • S. Fourletov
    • 50
  • A. Galas
    • 12
  • E. Gallo
    • 17
  • A. Garfagnini
    • 39
  • A. Geiser
    • 15
  • I. Gialas
    • 21
  • L. K. Gladilin
    • 33
  • D. Gladkov
    • 32
  • C. Glasman
    • 29
  • O. Gogota
    • 26
  • Yu. A. Golubkov
    • 33
  • P. Göttlicher
    • 15
  • I. Grabowska-Bołd
    • 13
  • J. Grebenyuk
    • 15
  • I. Gregor
    • 15
  • G. Grigorescu
    • 35
  • G. Grzelak
    • 52
  • C. Gwenlan
    • 37
  • T. Haas
    • 15
  • W. Hain
    • 15
  • R. Hamatsu
    • 47
  • J. C. Hart
    • 43
  • H. Hartmann
    • 5
  • G. Hartner
    • 56
  • E. Hilger
    • 5
  • D. Hochman
    • 54
  • U. Holm
    • 22
  • R. Hori
    • 46
  • K. Horton
    • 37
  • A. Hüttmann
    • 15
  • Z. A. Ibrahim
    • 10
  • Y. Iga
    • 41
  • R. Ingbir
    • 44
  • M. Ishitsuka
    • 45
  • H.-P. Jakob
    • 5
  • F. Januschek
    • 15
  • M. Jimenez
    • 29
  • T. W. Jones
    • 51
  • M. Jüngst
    • 5
  • I. Kadenko
    • 26
  • B. Kahle
    • 15
  • B. Kamaluddin
    • 10
  • S. Kananov
    • 44
  • T. Kanno
    • 45
  • U. Karshon
    • 54
  • F. Karstens
    • 19
  • I. I. Katkov
    • 15
  • M. Kaur
    • 7
  • P. Kaur
    • 7
  • A. Keramidas
    • 35
  • L. A. Khein
    • 33
  • J. Y. Kim
    • 9
  • D. Kisielewska
    • 13
  • S. Kitamura
    • 47
  • R. Klanner
    • 22
  • U. Klein
    • 15
  • E. Koffeman
    • 35
  • D. Kollar
    • 34
  • P. Kooijman
    • 35
  • Ie. Korol
    • 26
  • A. Kotański
    • 14
  • U. Kötz
    • 15
  • H. Kowalski
    • 15
  • P. Kulinski
    • 52
  • O. Kuprash
    • 26
  • M. Kuze
    • 45
  • V. A. Kuzmin
    • 33
  • A. Lee
    • 36
  • B. B. Levchenko
    • 33
  • A. Levy
    • 44
  • V. Libov
    • 15
  • S. Limentani
    • 39
  • T. Y. Ling
    • 36
  • M. Lisovyi
    • 15
  • W. Lohmann
    • 16
  • B. Löhr
    • 15
  • E. Lohrmann
    • 22
  • J. H. Loizides
    • 51
  • K. R. Long
    • 23
  • A. Longhin
    • 38
  • D. Lontkovskyi
    • 26
  • J. Łukasik
    • 13
  • O. Yu. Lukina
    • 33
  • P. Łużniak
    • 52
  • J. Maeda
    • 45
  • S. Magill
    • 1
  • I. Makarenko
    • 26
  • J. Malka
    • 52
  • R. Mankel
    • 15
  • A. Margotti
    • 3
  • G. Marini
    • 42
  • J. F. Martin
    • 50
  • A. Mastroberardino
    • 8
  • T. Matsumoto
    • 24
  • M. C. K. Mattingly
    • 2
  • F. Mohamad Idris
    • 10
  • V. Monaco
    • 48
  • A. Montanari
    • 15
  • J. D. Morris
    • 6
  • B. Musgrave
    • 1
  • K. Nagano
    • 24
  • T. Namsoo
    • 15
  • R. Nania
    • 3
  • D. Nicholass
    • 1
  • A. Nigro
    • 42
  • Y. Ning
    • 11
  • U. Noor
    • 56
  • D. Notz
    • 15
  • R. J. Nowak
    • 52
  • B. Y. Oh
    • 40
  • N. Okazaki
    • 46
  • K. Oliver
    • 37
  • K. Olkiewicz
    • 12
  • O. Ota
    • 47
  • K. Papageorgiu
    • 21
  • E. Paul
    • 5
  • J. M. Pawlak
    • 52
  • B. Pawlik
    • 12
  • P. G. Pelfer
    • 18
  • A. Pellegrino
    • 35
  • W. Perlanski
    • 52
  • H. Perrey
    • 22
  • K. Piotrzkowski
    • 28
  • P. Plucinski
    • 53
  • N. S. Pokrovskiy
    • 25
  • A. Polini
    • 3
  • A. S. Proskuryakov
    • 33
  • A. Raval
    • 15
  • D. D. Reeder
    • 55
  • B. Reisert
    • 34
  • Z. Ren
    • 11
  • Y. D. Ri
    • 47
  • A. Robertson
    • 37
  • P. Roloff
    • 15
  • E. Ron
    • 29
  • I. Rubinsky
    • 15
  • M. Ruspa
    • 49
  • R. Sacchi
    • 48
  • A. Salii
    • 26
  • U. Samson
    • 5
  • G. Sartorelli
    • 4
  • A. A. Savin
    • 55
  • D. H. Saxon
    • 20
  • M. Schioppa
    • 8
  • P. Schleper
    • 22
  • W. B. Schmidke
    • 34
  • V. Schönberg
    • 5
  • J. Schwartz
    • 30
  • F. Sciulli
    • 11
  • L. M. Shcheglova
    • 33
  • R. Shehzadi
    • 5
  • S. Shimizu
    • 46
  • I. Singh
    • 7
  • I. O. Skillicorn
    • 20
  • W. Słomiński
    • 14
  • W. H. Smith
    • 55
  • V. Sola
    • 48
  • A. Solano
    • 48
  • A. Solomin
    • 6
  • D. Son
    • 27
  • V. Sosnovtsev
    • 32
  • A. Spiridonov
    • 15
  • H. Stadie
    • 22
  • L. Stanco
    • 38
  • A. Stern
    • 44
  • T.P. Stewart
    • 50
  • A. Stifutkin
    • 32
  • P. Stopa
    • 12
  • S. Suchkov
    • 32
  • G. Susinno
    • 8
  • L. Suszycki
    • 13
  • J. Sztuk
    • 22
  • D. Szuba
    • 15
  • J. Szuba
    • 15
  • A. D. Tapper
    • 23
  • E. Tassi
    • 8
  • J. Terrón
    • 29
  • T. Theedt
    • 15
  • H. Tiecke
    • 35
  • K. Tokushuku
    • 24
  • O. Tomalak
    • 26
  • J. Tomaszewska
    • 15
  • T. Tsurugai
    • 31
  • M. Turcato
    • 22
  • T. Tymieniecka
    • 53
  • M. Vázquez
    • 35
  • A. Verbytskyi
    • 15
  • V. Viazlo
    • 26
  • N. N. Vlasov
    • 19
  • O. Volynets
    • 26
  • R. Walczak
    • 37
  • W. A. T. Wan Abdullah
    • 10
  • J. J. Whitmore
    • 40
  • J. Whyte
    • 56
  • M. Wing
    • 51
  • M. Wlasenko
    • 5
  • G. Wolf
    • 15
  • H. Wolfe
    • 55
  • K. Wrona
    • 15
  • S. Yamada
    • 24
  • Y. Yamazaki
    • 24
  • R. Yoshida
    • 1
  • C. Youngman
    • 15
  • A. F. Żarnecki
    • 52
  • O. Zenaiev
    • 26
  • B. O. Zhautykov
    • 25
  • N. Zhmak
    • 26
  • C. Zhou
    • 30
  • A. Zichichi
    • 4
  • M. Zolko
    • 26
  • D. S. Zotkin
    • 33
  1. 1.Argonne National LaboratoryArgonneU.S.A.
  2. 2.Andrews UniversityMichiganU.S.A.
  3. 3.INFN BolognaBolognaItaly
  4. 4.University and INFN BolognaBolognaItaly
  5. 5.Physikalisches Institut der Universität BonnBonnGermany
  6. 6.H.H. Wills Physics LaboratoryUniversity of BristolBristolU.K.
  7. 7.Panjab University, Department of PhysicsChandigarhIndia
  8. 8.Calabria University, Physics Department and INFNCosenzaItaly
  9. 9.Chonnam National UniversityKwangjuSouth Korea
  10. 10.Jabatan FizikUniversiti MalayaKuala LumpurMalaysia
  11. 11.Nevis LaboratoriesColumbia UniversityNew YorkU.S.A.
  12. 12.The Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of SciencesCracowPoland
  13. 13.Faculty of Physics and Applied Computer ScienceAGH-University of Science and TechnologyCracowPoland
  14. 14.Department of PhysicsJagellonian UniversityCracowPoland
  15. 15.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  16. 16.Deutsches Elektronen-Synchrotron DESYZeuthenGermany
  17. 17.INFN FlorenceFlorenceItaly
  18. 18.University and INFN FlorenceFlorenceItaly
  19. 19.Fakultät für Physik der Universität Freiburg i.Br.Freiburg i.Br.Germany
  20. 20.Department of Physics and AstronomyUniversity of GlasgowGlasgowU.K.
  21. 21.Department of Engineering in Management and FinanceUniv. of the AegeanChiosGreece
  22. 22.Hamburg University, Institute of Exp. PhysicsHamburgGermany
  23. 23.Imperial College LondonHigh Energy Nuclear Physics GroupLondonU.K.
  24. 24.Institute of Particle and Nuclear StudiesKEKTsukubaJapan
  25. 25.Institute of Physics and Technology of Ministry of Education and Science of KazakhstanAlmatyKazakhstan
  26. 26.Institute for Nuclear ResearchNational Academy of Sciences and Kiev National UniversityKievUkraine
  27. 27.Kyungpook National University, Center for High Energy PhysicsDaeguSouth Korea
  28. 28.Institut de Physique NucléaireUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  29. 29.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain
  30. 30.Department of PhysicsMcGill UniversityMontréalCanada
  31. 31.Meiji Gakuin University, Faculty of General EducationYokohamaJapan
  32. 32.Moscow Engineering Physics InstituteMoscowRussia
  33. 33.Moscow State University, Institute of Nuclear PhysicsMoscowRussia
  34. 34.Max-Planck-Institut für PhysikMünchenGermany
  35. 35.NIKHEF and University of AmsterdamAmsterdamNetherlands
  36. 36.Physics DepartmentOhio State UniversityColumbusU.S.A.
  37. 37.Department of PhysicsUniversity of OxfordOxfordU.K.
  38. 38.INFN PadovaPadovaItaly
  39. 39.Dipartimento di Fisica dell’ Università and INFNPadovaItaly
  40. 40.Department of PhysicsPennsylvania State UniversityPennsylvaniaU.S.A.
  41. 41.Polytechnic UniversitySagamiharaJapan
  42. 42.Dipartimento di FisicaUniversitá ’La Sapienza’ and INFNRomeItaly
  43. 43.Rutherford Appleton LaboratoryOxonU.K.
  44. 44.Raymond and Beverly Sackler Faculty of Exact SciencesSchool of Physics, Tel Aviv UniversityTel AvivIsrael
  45. 45.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  46. 46.Department of PhysicsUniversity of TokyoTokyoJapan
  47. 47.Tokyo Metropolitan University, Department of PhysicsTokyoJapan
  48. 48.Università di Torino and INFNTorinoItaly
  49. 49.Università del Piemonte Orientale, Novara, and INFNTorinoItaly
  50. 50.Department of PhysicsUniversity of TorontoTorontoCanada
  51. 51.Physics and Astronomy DepartmentUniversity College LondonLondonU.K.
  52. 52.Warsaw University, Institute of Experimental PhysicsWarsawPoland
  53. 53.Institute for Nuclear StudiesWarsawPoland
  54. 54.Department of Particle PhysicsWeizmann InstituteRehovotIsrael
  55. 55.Department of PhysicsUniversity of WisconsinMadisonU.S.A.
  56. 56.Department of PhysicsYork UniversityOntarioCanada

Personalised recommendations