Monodromy and Jacobi-like relations for color-ordered amplitudes

  • N. E. J. Bjerrum-Bohr
  • Poul H. Damgaard
  • Thomas Søndergaard
  • Pierre Vanhove
Open Access


We discuss monodromy relations between different color-ordered amplitudes in gauge theories. We show that Jacobi-like relations of Bern, Carrasco and Johansson can be introduced in a manner that is compatible with these monodromy relations. The Jacobi-like relations are not the most general set of equations that satisfy this criterion. Applications to supergravity amplitudes follow straightforwardly through the KLT-relations. We explicitly show how the tree-level relations give rise to non-trivial identities at loop level.


Superstrings and Heterotic Strings Gauge Symmetry Bosonic Strings Models of Quantum Gravity 


  1. [1]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Cambridge Univ. Press, Cambridge U.K. (1987) [SPIRES].MATHGoogle Scholar
  3. [3]
    Z. Bern, Perturbative quantum gravity and its relation to gauge theory, Living Rev. Rel. 5 (2002) 5 [gr-qc/0206071] [SPIRES].MathSciNetGoogle Scholar
  4. [4]
    Z. Bern and A.K. Grant, Perturbative gravity from QCD amplitudes, Phys. Lett. B 457 (1999) 23 [hep-th/9904026] [SPIRES].ADSGoogle Scholar
  5. [5]
    Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    N.E.J. Bjerrum-Bohr, String theory and the mapping of gravity into gauge theory, Phys. Lett. B 560 (2003) 98 [hep-th/0302131] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    N.E.J. Bjerrum Bohr, Generalized string theory mapping relations between gravity and gauge theory, Nucl. Phys. B 673 (2003) 41 [hep-th/0305062] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    N.E.J. Bjerrum-Bohr and K. Risager, String theory and the KLT-relations between gravity and gauge theory including external matter, Phys. Rev. D 70 (2004) 086011 [hep-th/0407085] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    S. Ananth and S. Theisen, KLT relations from the Einstein-Hilbert Lagrangian, Phys. Lett. B 652 (2007) 128 [arXiv:0706.1778] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    M. Bianchi, H. Elvang and D.Z. Freedman, Generating Tree Amplitudes in N = 4 SYM and N = 8 SG, JHEP 09 (2008) 063 [arXiv:0805.0757] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    N.E.J. Bjerrum-Bohr and O.T. Engelund, Gravitino Interactions from Yang-Mills Theory, Phys. Rev. D 81 (2010) 105009 [arXiv:1002.2279] [SPIRES].ADSGoogle Scholar
  12. [12]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal Basis for Gauge Theory Amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    D.-p. Zhu, Zeros In Scattering Amplitudes And The Structure Of Nonabelian Gauge heories, Phys. Rev. D 22 (1980) 2266 [SPIRES].Google Scholar
  15. [15]
    T. Sondergaard, New Relations for Gauge-Theory Amplitudes with Matter, Nucl. Phys. B 821 (2009) 417 [arXiv:0903.5453] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at Hardon colliders, Nucl. Phys. B 312 (1989) 616 [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    H. Tye and Y. Zhang, Dual Identities inside the Gluon and the Graviton Scattering Amplitudes, arXiv:1003.1732 [SPIRES].
  19. [19]
    E. Plahte, Symmetry properties of dual tree-graph n-point amplitudes, Nuovo Cim. A 66 (1970) 713 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B 240 (1984) 312 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    R. Medina, F.T. Brandt and F.R. Machado, The open superstring 5-point amplitude revisited, JHEP 07 (2002) 071 [hep-th/0208121] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    S. Stieberger and T.R. Taylor, Complete Six-Gluon Disk Amplitude in Superstring Theory, Nucl. Phys. B 801 (2008) 128 [arXiv:0711.4354] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    S. Stieberger and T.R. Taylor, Supersymmetry Relations and MHV Amplitudes in Superstring Theory, Nucl. Phys. B 793 (2008) 83 [arXiv:0708.0574] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    S. Stieberger and T.R. Taylor, Multi-gluon scattering in open superstring theory, Phys. Rev. D 74 (2006) 126007 [hep-th/0609175] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    S. Stieberger and T.R. Taylor, Amplitude for N-gluon superstring scattering, Phys. Rev. Lett. 97 (2006) 211601 [hep-th/0607184] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211 [SPIRES].
  27. [27]
    R. Boels, K.J. Larsen, N.A. Obers and M. Vonk, MHV, CSW and BCFW: field theory structures in string theory amplitudes, JHEP 11 (2008) 015 [arXiv:0808.2598] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    C. Cheung, D. O’Connell and B. Wecht, BCFW Recursion Relations and String Theory, arXiv:1002.4674 [SPIRES].
  29. [29]
    R.H. Boels, D. Marmiroli and N.A. Obers, On-shell Recursion in String Theory, arXiv:1002.5029 [SPIRES].
  30. [30]
    D. Oprisa and S. Stieberger, Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums, hep-th/0509042 [SPIRES].
  31. [31]
    N. Berkovits, Super-Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    C.R. Mafra, Simplifying the Tree-level Superstring Massless Five-point Amplitude, JHEP 01 (2010) 007 [arXiv:0909.5206] [SPIRES].CrossRefGoogle Scholar
  33. [33]
    Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys. B 362 (1991) 389 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    M.L. Mangano and S.J. Parke, Multi-Parton Amplitudes in Gauge Theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    L.J. Dixon, Calculating scattering amplitudes efficiently, in QCD & Beyond: Proceedings of TASI’95, ed. D.E. Soper, World Scientific Singapore (1996) hep-ph/9601359 [SPIRES].Google Scholar
  41. [41]
    F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory, PoS(RTN2005)004 [hep-th/0504194] [SPIRES].
  42. [42]
    Z. Bern, L.J. Dixon and D.A. Kosower, On-Shell Methods in Perturbative QCD, Annals Phys. 322 (2007) 1587 [arXiv:0704.2798] [SPIRES].MATHCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • N. E. J. Bjerrum-Bohr
    • 1
  • Poul H. Damgaard
    • 1
  • Thomas Søndergaard
    • 1
  • Pierre Vanhove
    • 2
    • 3
  1. 1.Niels Bohr International Academy and DISCOVERY CenterThe Niels Bohr InstituteCopenhagen ØDenmark
  2. 2.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance
  3. 3.CEA, DSM, Institut de Physique Théorique, IPhT, CNRS, MPPUGif-sur-YvetteFrance

Personalised recommendations