Skip to main content
Log in

Photon isolation effects at NLO in γγ+jet final states in hadronic collisions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present the NLO QCD corrections to pp → γγj production at hadron colliders. Our calculation includes contributions from the fragmentation of a hadronic jet into a highly energetic photon, and consequently allows the implementation of arbitrary infrared-safe photon isolation definitions. We compare different photon isolation criteria and perform a detailed study of the dependence of the γγj cross section on the photon isolation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. ATLAS collaboration, Search for diphoton events with large missing transverse momentum in 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 718 (2012) 411 [arXiv:1209.0753] [INSPIRE].

    ADS  Google Scholar 

  4. ATLAS collaboration, Search for Extra Dimensions in diphoton events using proton-proton collisions recorded at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, New J. Phys. 15 (2013) 043007 [arXiv:1210.8389] [INSPIRE].

    Article  Google Scholar 

  5. CMS collaboration, Search for supersymmetry in events with photons and low missing transverse energy in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 719 (2013) 42 [arXiv:1210.2052] [INSPIRE].

    ADS  Google Scholar 

  6. CMS collaboration, Search for new physics in events with photons, jets and missing transverse energy in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 03 (2013) 111 [arXiv:1211.4784] [INSPIRE].

    ADS  Google Scholar 

  7. T. Binoth, J. Guillet, E. Pilon and M. Werlen, A Full next-to-leading order study of direct photon pair production in hadronic collisions, Eur. Phys. J. C 16 (2000) 311 [hep-ph/9911340] [INSPIRE].

    Article  ADS  Google Scholar 

  8. Z. Bern, L.J. Dixon and C. Schmidt, Isolating a light Higgs boson from the diphoton background at the CERN LHC, Phys. Rev. D 66 (2002) 074018 [hep-ph/0206194] [INSPIRE].

    ADS  Google Scholar 

  9. C. Balázs, P.M. Nadolsky, C. Schmidt and C. Yuan, Diphoton background to Higgs boson production at the LHC with soft gluon effects, Phys. Lett. B 489 (2000) 157 [hep-ph/9905551] [INSPIRE].

    ADS  Google Scholar 

  10. C. Balázs, E.L. Berger, P.M. Nadolsky and C.-P. Yuan, All-orders resummation for diphoton production at hadron colliders, Phys. Lett. B 637 (2006) 235 [hep-ph/0603037] [INSPIRE].

    ADS  Google Scholar 

  11. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S. Hoeche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].

    ADS  Google Scholar 

  13. L. D’Errico and P. Richardson, Next-to-Leading-Order Monte Carlo Simulation of Diphoton Production in Hadronic Collisions, JHEP 02 (2012) 130 [arXiv:1106.3939] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Odaka and Y. Kurihara, Consistent simulation of non-resonant diphoton production at hadron collisions with a custom-made parton shower, Phys. Rev. D 85 (2012) 114022 [arXiv:1203.4038] [INSPIRE].

    ADS  Google Scholar 

  15. E.W.N. Glover and A. Morgan, Measuring the photon fragmentation function at LEP, Z. Phys. C62 (1994) 311.

    ADS  Google Scholar 

  16. A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Radiative corrections to the photon + 1 jet rate at LEP, Phys. Lett. B 414 (1997) 354 [hep-ph/9705305] [INSPIRE].

    ADS  Google Scholar 

  17. A. Gehrmann-De Ridder and E.W.N. Glover, Final state photon production at LEP, Eur. Phys. J. C 7 (1999) 29 [hep-ph/9806316] [INSPIRE].

    ADS  Google Scholar 

  18. V. Del Duca, F. Maltoni, Z. Nagy and Z. Trócsányi, QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders, JHEP 04 (2003) 059 [hep-ph/0303012] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Z. Bern et al., Driving Missing Data at Next-to-Leading Order, Phys. Rev. D 84 (2011) 114002 [arXiv:1106.1423] [INSPIRE].

    ADS  Google Scholar 

  20. B. Jager, Next-to-leading order QCD corrections to photon production via weak-boson fusion, Phys. Rev. D 81 (2010) 114016 [arXiv:1004.0825] [INSPIRE].

    ADS  Google Scholar 

  21. G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].

    ADS  Google Scholar 

  24. SM and NLO multi-leg and SM MC Working Groups, J. Alcaraz Maestre et al., The SM and NLO Multileg and SM MC Working Groups: Summary Report, arXiv:1203.6803 [INSPIRE].

  25. Z. Kunszt and Z. Trócsányi, QCD corrections to photon production in association with hadrons in e + e annihilation, Nucl. Phys. B 394 (1993) 139 [hep-ph/9207232] [INSPIRE].

    Article  ADS  Google Scholar 

  26. OPAL collaboration, Measurement of the quark to photon fragmentation function through the inclusive production of prompt photons in hadronic Z 0 decays, Eur. Phys. J. C 2 (1998) 39 [hep-ex/9708020] [INSPIRE].

    ADS  Google Scholar 

  27. A. Gehrmann-De Ridder, T. Gehrmann and E. Poulsen, Isolated photons in deep inelastic scattering, Phys. Rev. Lett. 96 (2006) 132002 [hep-ph/0601073] [INSPIRE].

    Article  ADS  Google Scholar 

  28. ZEUS collaboration, Observation of isolated high E T photons in deep inelastic scattering, Phys. Lett. B 595 (2004) 86 [hep-ex/0402019] [INSPIRE].

    ADS  Google Scholar 

  29. ZEUS collaboration, Measurement of isolated photon production in deep inelastic ep scattering, Phys. Lett. B 687 (2010) 16 [arXiv:0909.4223] [INSPIRE].

    ADS  Google Scholar 

  30. H1 collaboration, Measurement of isolated photon production in deep-inelastic scattering at HERA, Eur. Phys. J. C 54 (2008) 371 [arXiv:0711.4578] [INSPIRE].

    Google Scholar 

  31. ALEPH collaboration, First measurement of the quark to photon fragmentation function, Z. Phys. C 69 (1996) 365 [INSPIRE].

    Google Scholar 

  32. A. Gehrmann-De Ridder and E.W.N. Glover, A Complete O(αα s ) calculation of the photon + 1 jet rate in e + e annihilation, Nucl. Phys. B 517 (1998) 269 [hep-ph/9707224] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Gehrmann-De Ridder, T. Gehrmann and E. Poulsen, Measuring the Photon Fragmentation Function at HERA, Eur. Phys. J. C 47 (2006) 395 [hep-ph/0604030] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Owens, Large Momentum Transfer Production of Direct Photons, Jets and Particles, Rev. Mod. Phys. 59 (1987) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Gluck, E. Reya and A. Vogt, Parton fragmentation into photons beyond the leading order, Phys. Rev. D 48 (1993) 116 [Erratum ibid. D 51 (1995) 1427] [INSPIRE].

  37. L. Bourhis, M. Fontannaz and J. Guillet, Quarks and gluon fragmentation functions into photons, Eur. Phys. J. C 2 (1998) 529 [hep-ph/9704447] [INSPIRE].

    ADS  Google Scholar 

  38. A. Denner, S. Dittmaier, T. Gehrmann and C. Kurz, Electroweak corrections to three-jet production in electron-positron annihilation, Phys. Lett. B 679 (2009) 219 [arXiv:0906.0372] [INSPIRE].

    ADS  Google Scholar 

  39. A. Denner, S. Dittmaier, T. Gehrmann and C. Kurz, Electroweak corrections to hadronic event shapes and jet production in e + e annihilation, Nucl. Phys. B 836 (2010) 37 [arXiv:1003.0986] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Denner, S. Dittmaier, T. Kasprzik and A. Muck, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Denner, S. Dittmaier, T. Kasprzik and A. Muck, Electroweak corrections to dilepton + jet production at hadron colliders, JHEP 06 (2011) 069 [arXiv:1103.0914] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Catani, M. Fontannaz, J. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP 05 (2002) 028 [hep-ph/0204023] [INSPIRE].

    Article  ADS  Google Scholar 

  43. Z. Belghobsi et al., Photon - Jet Correlations and Constraints on Fragmentation Functions, Phys. Rev. D 79 (2009) 114024 [arXiv:0903.4834] [INSPIRE].

    ADS  Google Scholar 

  44. T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Frederix, T. Gehrmann and N. Greiner, Automation of the Dipole Subtraction Method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [INSPIRE].

    Article  ADS  Google Scholar 

  47. R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP 06 (2010) 086 [arXiv:1004.2905] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Catani and M. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503–504] [hep-ph/9605323] [INSPIRE].

  49. F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].

    Article  ADS  Google Scholar 

  50. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  52. J. Kuipers, T. Ueda, J. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].

    Article  ADS  Google Scholar 

  53. G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: A Form Library for Helicity Spinors, Comput. Phys. Commun. 182 (2011) 2368 [arXiv:1008.0803] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. T. Reiter, Optimising Code Generation with haggies, Comput. Phys. Commun. 181 (2010) 1301 [arXiv:0907.3714] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. R.K. Ellis, W. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. P. Mastrolia, G. Ossola, C. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [INSPIRE].

    Article  ADS  Google Scholar 

  58. P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].

    Article  ADS  Google Scholar 

  59. G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial Reconstruction at the Integrand Level, JHEP 10 (2010) 105 [arXiv:1008.2441] [INSPIRE].

    Article  ADS  Google Scholar 

  60. T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: A Numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. G. Cullen et al., Golem95C: A library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. S. Dittmaier, A General approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].

    Article  ADS  Google Scholar 

  63. T. Gehrmann and N. Greiner, Photon Radiation with MadDipole, JHEP 12 (2010) 050 [arXiv:1011.0321] [INSPIRE].

    Article  ADS  Google Scholar 

  64. Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet observables in electron positron annihilation, Phys. Rev. D 59 (1999) 014020 [Erratum ibid. D 62 (2000) 099902] [hep-ph/9806317] [INSPIRE].

  65. M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  66. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  67. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    ADS  Google Scholar 

  68. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  69. T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ + jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Heinrich.

Additional information

ArXiv ePrint: 1303.0824

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrmann, T., Greiner, N. & Heinrich, G. Photon isolation effects at NLO in γγ+jet final states in hadronic collisions. J. High Energ. Phys. 2013, 58 (2013). https://doi.org/10.1007/JHEP06(2013)058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)058

Keywords

Navigation