Skip to main content
Log in

Probing Majorana neutrinos in rare π + → e + e + μ ν decays

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the rare decays of charged π mesons, π + → e + e + μ \( \overline v \) μ and π + → e + μ e + ν e induced by a sterile neutrino N with a mass in the range m μ  < m N  < m π . The first process violates Lepton Number by two units and so occurs only if N is Majorana, while the second process conserves Lepton Number and occurs irrespective of the Majorana or Dirac character of N . We study a way to distinguish the Majorana vs. Dirac character of N in these processes using the muon spectrum. We also find that the branching ratios could be at the reach of high luminosity experiments like Project X at FNAL or any proposed neutrino (or muon) factories worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].

    Article  ADS  Google Scholar 

  2. GALLEX collaboration, W. Hampel et al., GALLEX solar neutrino observations: results for GALLEX IV, Phys. Lett. B 447 (1999) 127 [INSPIRE].

    Article  ADS  Google Scholar 

  3. SAGE collaboration, J. Abdurashitov et al., Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22 year solar cycle, J. Exp. Theor. Phys. 95 (2002) 181 [Zh. Eksp. Teor. Fiz. 122 (2002) 211] [astro-ph/0204245] [INSPIRE].

  4. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

    Article  ADS  Google Scholar 

  5. Super-Kamiokande collaboration, S. Fukuda et al., Constraints on neutrino oscillations using 1258 days of Super-Kamiokande solar neutrino data, Phys. Rev. Lett. 86 (2001) 5656 [hep-ex/0103033] [INSPIRE].

    Article  ADS  Google Scholar 

  6. Super-Kamiokande collaboration, S. Fukuda et al., Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande I data, Phys. Lett. B 539 (2002) 179 [hep-ex/0205075] [INSPIRE].

    Article  ADS  Google Scholar 

  7. Super-Kamiokande collaboration, Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034] [INSPIRE].

    Article  ADS  Google Scholar 

  8. SNO collaboration, Q.R. Ahmad et al., Measurement of the rate of v e + dp + p+ interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].

    Article  ADS  Google Scholar 

  9. SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

    Article  ADS  Google Scholar 

  10. SNO collaboration, S. Ahmed et al., Measurement of the total active 8 B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity, Phys. Rev. Lett. 92 (2004) 181301 [nucl-ex/0309004] [INSPIRE].

    Article  ADS  Google Scholar 

  11. KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G. Racah, On the symmetry of particle and antiparticle (in Italian), Nuovo Cim. 14 (1937) 322 [INSPIRE].

    Article  Google Scholar 

  13. W. Furry, On transition probabilities in double beta-disintegration, Phys. Rev. 56 (1939) 1184 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. H. Primakoff and S.P. Rosen, Double beta decay, Rept. Prog. Phys. 22 (1959) 121.

    Article  ADS  Google Scholar 

  15. H. Primakoff and S.P. Rosen, Nuclear double-beta decay and a new limit on lepton nonconservation, Phys. Rev. 184 (1969) 1925 [INSPIRE].

    Article  ADS  Google Scholar 

  16. H. Primakoff and P.S. Rosen, Baryon number and lepton number conservation laws, Ann. Rev. Nucl. Part. Sci. 31 (1981) 145 [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Doi, T. Kotani and E. Takasugi, Double beta decay and Majorana neutrino, Prog. Theor. Phys. Suppl. 83 (1985) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  18. S.R. Elliott and J. Engel, Double beta decay, J. Phys. G 30 (2004) R183 [hep-ph/0405078] [INSPIRE].

    Article  ADS  Google Scholar 

  19. V.A. Rodin, A. Faessler, F. Simkovic and P. Vogel, Assessment of uncertainties in QRPA 0νββ-decay nuclear matrix elements, Nucl. Phys. A 766 (2006) 107 [Erratum ibid. A 793 (2007)213] [arXiv:0706.4304] [INSPIRE].

  20. M. Kortelainen, O. Civitarese, J. Suhonen and J. Toivanen, Short-range correlations and neutrinoless double beta decay, Phys. Lett. B 647 (2007) 128 [nucl-th/0701052] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Kortelainen and J. Suhonen, Improved short-range correlations and 0νββ nuclear matrix elements of 76 Ge and 82 Se, Phys. Rev. C 75 (2007) 051303 [arXiv:0705.0469] [INSPIRE].

    ADS  Google Scholar 

  22. M. Kortelainen and J. Suhonen, Nuclear matrix elements of neutrinoless double beta decay with improved short-range correlations, Phys. Rev. C 76 (2007) 024315 [arXiv:0708.0115] [INSPIRE].

    ADS  Google Scholar 

  23. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves and A. Zuker, The shell model as unified view of nuclear structure, Rev. Mod. Phys. 77 (2005) 427 [nucl-th/0402046] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Faessler et al., Overconstrained estimates of neutrinoless double beta decay within the QRPA, J. Phys. G 35 (2008) 075104 [arXiv:0711.3996] [INSPIRE].

    Article  ADS  Google Scholar 

  25. W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].

    Article  ADS  Google Scholar 

  26. V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-right symmetry: from LHC to neutrinoless double beta decay, Phys. Rev. Lett. 106 (2011) 151801 [arXiv:1011.3522] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Nemevšek, F. Nesti, G. Senjanović and V. Tello, Neutrinoless double beta decay: low left-right symmetry scale?, arXiv:1112.3061 [INSPIRE].

  28. G. Senjanović, Neutrino mass: from LHC to grand unification, Riv. Nuovo Cim. 034 (2011) 1 [INSPIRE].

    Google Scholar 

  29. L.S. Littenberg and R.E. Shrock, Upper bounds on lepton number violating meson decays, Phys. Rev. Lett. 68 (1992) 443 [INSPIRE].

    Article  ADS  Google Scholar 

  30. L.S. Littenberg and R. Shrock, Implications of improved upper bounds onL| = 2 processes, Phys. Lett. B 491 (2000) 285 [hep-ph/0005285] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C. Dib, V. Gribanov, S. Kovalenko and I. Schmidt, K meson neutrinoless double muon decay as a probe of neutrino masses and mixings, Phys. Lett. B 493 (2000) 82 [hep-ph/0006277] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Ali, A. Borisov and N. Zamorin, Majorana neutrinos and same sign dilepton production at LHC and in rare meson decays, Eur. Phys. J. C 21 (2001) 123 [hep-ph/0104123] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. de Gouvêa and J. Jenkins, A survey of lepton number violation via effective operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].

    ADS  Google Scholar 

  34. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Cvetič, C. Dib, S.K. Kang and C. Kim, Probing Majorana neutrinos in rare K and D, D s , B, B c meson decays, Phys. Rev. D 82 (2010) 053010 [arXiv:1005.4282] [INSPIRE].

    ADS  Google Scholar 

  36. Project X and the science of the intensity frontier, white paper based on the Project X Physics Workshop, http://projectx.fnal.gov/pdfs/ProjectXwhitepaperJan.v2.pdf, Fermilab, Batavia U.S.A. November 9-10 2009.

  37. J.C. Helo, S. Kovalenko and I. Schmidt, Sterile neutrinos in lepton number and lepton flavor violating decays, Nucl. Phys. B 853 (2011) 80 [arXiv:1005.1607] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Dolgov and S. Hansen, Massive sterile neutrinos as warm dark matter, Astropart. Phys. 16 (2002) 339 [hep-ph/0009083] [INSPIRE].

    Article  ADS  Google Scholar 

  39. T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A.Y. Smirnov and R. Zukanovich Funchal, Sterile neutrinos: direct mixing effects versusinduced mass matrix of active neutrinos, Phys. Rev. D 74 (2006) 013001 [hep-ph/0603009] [INSPIRE].

    ADS  Google Scholar 

  42. U. Seljak, A. Slosar and P. McDonald, Cosmological parameters from combining the Lyman-α forest with CMB, galaxy clustering and SN constraints, JCAP 10 (2006) 014 [astro-ph/0604335] [INSPIRE].

    Article  ADS  Google Scholar 

  43. T. Schwetz, M. Tortola and J.W. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [INSPIRE].

    Article  ADS  Google Scholar 

  44. W. Winter, Lectures on neutrino phenomenology, Nucl. Phys. Proc. Suppl. 203-204 (2010) 45 [arXiv:1004.4160] [INSPIRE].

    Article  Google Scholar 

  45. PIENU collaboration, M. Aoki et al., Search for massive neutrinos in the decay π, Phys. Rev. D 84 (2011) 052002 [arXiv:1106.4055] [INSPIRE].

    ADS  Google Scholar 

  46. ATLAS collaboration, G. Aad et al., The ATLAS experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Geer, private communication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Dib.

Additional information

ArXiv ePrint: 1203.0573

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvetič, G., Dib, C. & Kim, C.S. Probing Majorana neutrinos in rare π + → e + e + μ ν decays. J. High Energ. Phys. 2012, 149 (2012). https://doi.org/10.1007/JHEP06(2012)149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)149

Keywords

Navigation