Skip to main content
Log in

Measuring Higgs \( \mathcal{C}\mathcal{P} \) and couplings with hadronic event shapes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Experimental falsification or validation of the Standard Model of Particle Physics involves the measurement of the \( \mathcal{C}\mathcal{P} \) quantum number and couplings of the Higgs boson. Both Atlas and Cms have reported an SM Higgs-like excess around m H  = 125 GeV. In this mass range the \( \mathcal{C}\mathcal{P} \) properties of the Higgs boson can be extracted from an analysis of the azimuthal angle distribution of the two jets in pp → H jj events. This channel is also important to measure the couplings of the Higgs boson to electroweak gauge bosons and fermions, hereby establishing the exceptional role of the Higgs boson in the Standard Model. Instead of exploiting the jet angular correlation, we show that hadronic event shapes exhibit substantial discriminative power to separate a \( \mathcal{C}\mathcal{P} \) even from a \( \mathcal{C}\mathcal{P} \) odd Higgs. Some event shapes even show an increased sensitivity to the Higgs \( \mathcal{C}\mathcal{P} \) compared to the azimuthal angle correlation. Constraining the Higgs couplings via a separation of the weak boson fusion and the gluon fusion Higgs production modes can be achieved applying similar strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    ADS  Google Scholar 

  3. P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    ADS  Google Scholar 

  5. ATLAS collaboration, G. Aad et al., Limits on the production of the Standard Model Higgs Boson in pp collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1728 [arXiv:1106.2748] [INSPIRE].

    ADS  Google Scholar 

  6. CMS collaboration, S. Chatrchyan et al., Measurement of W + W Production and Search for the Higgs Boson in pp Collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 699 (2011) 25 [arXiv:1102.5429] [INSPIRE].

    ADS  Google Scholar 

  7. ATLAS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 fb-1 of pp collisions at \( \sqrt {s} = 7 \) TeV at the LHC, ATLAS-CONF-2011-157 (2011).

  8. CMS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 inverse femtobarns of pp collision data at \( \sqrt {s} = 7 \) TeV at the LHC, CMS-PAS-HIG-11-023 (2011).

  9. ATLAS collaboration, G. Aad et al., Search for the Higgs boson in the \( H \to W{W^{\left( * \right)}} \to {l^{+} }\nu {l^{-} }\bar{\nu } \) decay channel in pp collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 111802 [arXiv:1112.2577] [INSPIRE].

    ADS  Google Scholar 

  10. ATLAS collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb-1 of ATLAS data at \( \sqrt {s} = 7 \) TeV, ATLAS-CONF-2011-161 (2011).

  11. ATLAS collaboration, Search for the Standard Model Higgs boson in the decay channel \( H \to Z{Z^{\left( * \right)}} \to 4\ell \) with 4.8 fb −1 of pp collisions at \( \sqrt {s} = 7 \) TeV, ATLAS-CONF-2011-162 (2011).

  12. ATLAS collaboration, Combination of Higgs Boson Searches with up to 4.9 fb-1 of pp Collisions Data Taken at a center-of-mass energy of 7 TeV with the ATLAS Experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  13. CMS collaboration, Search for a Higgs boson produced in the decay channel 4 l, PAS-HIG-11-025.

  14. CMS collaboration, Search for Neutral Higgs Bosons Decaying to Tau Pairs in pp Collisions at \( \sqrt {s} = 7 \) TeV, PAS-HIG-11-029.

  15. CMS collaboration, Search for a Higgs boson decaying into two photons in the CMS detector, PAS-HIG-11-030.

  16. CMS collaboration, Search for Higgs Boson in VH Production with H to bb, PAS-HIG-11-031.

  17. CMS collaboration, Combination of SM Higgs Searches, PAS-HIG-11-032.

  18. ATLAS collaboration, An update to the combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC using up to 4.9 fb-1 of pp collision data at \( \sqrt {s} = 7 \) TeV, ATLAS-CONF-2012-019 (2012).

  19. CMS, Combination of SM, SM4, FP Higgs boson searches, PAS-HIG-12-008.

  20. LEP Working Group for Higgs boson searches, ALEPH collaboration, DELPHI collaboration, L3 collaboration, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  21. TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF collaboration, D0 collaboration, Combined CDF and D0 Search for Standard Model Higgs Boson Production with up to 10.0 f b −1 of Data, arXiv:1203.3774 [INSPIRE].

  22. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, arXiv:1202.3144 [INSPIRE].

  23. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    ADS  Google Scholar 

  24. J.R. Espinosa, C. Grojean, M. Mühlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, J HEP 05 (2012) 097 arXiv:1202.3697 [INSPIRE].

    ADS  Google Scholar 

  25. U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].

    ADS  Google Scholar 

  26. J.F. Gunion, Y. Jiang and S. Kraml, The Constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].

    ADS  Google Scholar 

  27. S.F. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs Benchmarks Near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].

    ADS  Google Scholar 

  28. D.A. Vasquez, G. Bélanger, C. Boehm, J. Da Silva, P. Richardson, et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, arXiv:1203.3446 [INSPIRE].

  29. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    ADS  Google Scholar 

  30. X.G. He, B. Ren and J. Tandean, Hints of Standard Model Higgs Boson at the LHC and Light Dark Matter Searches, Phys. Rev. D 85 (2012) 093019 [arXiv:1112.6364] [INSPIRE].

    ADS  Google Scholar 

  31. F. Goertz, U. Haisch and M. Neubert, Bounds on Warped Extra Dimensions from a Standard Model-like Higgs Boson, Phys. Lett. B 713 (2012) 23 [arXiv:1112.5099] [INSPIRE].

    ADS  Google Scholar 

  32. G. Guo, B. Ren and X.G. He, LHC Evidence Of A 126 GeV Higgs Boson From H → γγ With Three And Four Generations, arXiv:1112.3188 [INSPIRE].

  33. C.F. Chang, K. Cheung, Y.C. Lin and T.C. Yuan, Mimicking the Standard Model Higgs Boson in UMSSM, arXiv:1202.0054 [INSPIRE].

  34. B. Grzadkowski, J.F. Gunion and M. Toharia, Higgs-Radion interpretation of the LHC data?, Phys. Lett. B 712 (2012) 70 [arXiv:1202.5017] [INSPIRE].

    ADS  Google Scholar 

  35. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, arXiv:1203.4254 [INSPIRE].

  36. L.F. Landau, The moment of a 2-photon system, Dok. Akad. Nauk USSR 60 (1948) 207.

    Google Scholar 

  37. C.N. Yang, Selection Rules for the Dematerialization of a Particle Into Two Photons, Phys. Rev. 77 (1950) 242 [INSPIRE].

    ADS  MATH  Google Scholar 

  38. J. Ellis and D.S. Hwang, Does the ‘Higgs’ have Spin Zero?, arXiv:1202.6660 [INSPIRE].

  39. H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].

    ADS  Google Scholar 

  40. A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    ADS  Google Scholar 

  41. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    ADS  Google Scholar 

  42. M. Spira, A. Djouadi, D. Graudenz and R.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    ADS  Google Scholar 

  43. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

    ADS  Google Scholar 

  44. S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].

    ADS  Google Scholar 

  45. N. Kauer, T. Plehn, D.L. Rainwater and D. Zeppenfeld, HW W as the discovery mode for a light Higgs boson, Phys. Lett. B 503 (2001) 113 [hep-ph/0012351] [INSPIRE].

    ADS  Google Scholar 

  46. D.L. Rainwater, D. Zeppenfeld and K. Hagiwara, Searching for Hτ τ in weak boson fusion at the CERN LHC, Phys. Rev. D 59 (1998) 014037 [hep-ph/9808468] [INSPIRE].

    ADS  Google Scholar 

  47. D. Zeppenfeld, R. Kinnunen, A. Nikitenko and E. Richter-Was, Measuring Higgs boson couplings at the CERN LHC, Phys. Rev. D 62 (2000) 013009 [hep-ph/0002036] [INSPIRE].

    ADS  Google Scholar 

  48. M. Dührssen, Prospects for the measurement of Higgs boson coupling parameters in the mass range from 110 - 190 GeV, ATL-PHYS-2003-030 (2003).

  49. M. Dührssen, S. Heinemeyer, H. Logan, D. Rainwater, G. Weiglein and D. Zeppenfeld, Extracting Higgs boson couplings from CERN LHC data, Phys. Rev. D 70 (2004) 113009 [hep-ph/0406323] [INSPIRE].

    ADS  Google Scholar 

  50. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs Sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    ADS  Google Scholar 

  51. M. Rauch, Measuring the Higgs boson couplings, arXiv:1110.1196 [INSPIRE].

  52. J. Bagger, V.D. Barger, K.M. Cheung, J.F. Gunion, T. Han, G.A. Ladinsky et al., CERN LHC analysis of the strongly interacting W W system: Gold plated modes, Phys. Rev. D 52 (1995) 3878 [hep-ph/9504426] [INSPIRE].

    ADS  Google Scholar 

  53. C. Englert, B. Jäger, M. Worek and D. Zeppenfeld, Observing Strongly Interacting Vector Boson Systems at the CERN Large Hadron Collider, Phys. Rev. D 80 (2009) 035027 [arXiv:0810.4861] [INSPIRE].

    ADS  Google Scholar 

  54. A. Ballestrero, D. Buarque Franzosi, L. Oggero and E. Maina, Vector Boson scattering at the LHC: counting experiments for unitarized models in a full six fermion approach, JHEP 03 (2012) 031 [arXiv:1112.1171] [INSPIRE].

    ADS  Google Scholar 

  55. P. Borel, R. Franceschini, R. Rattazzi and A. Wulzer, Probing the Scattering of Equivalent Electroweak Bosons, arXiv:1202.1904 [INSPIRE].

  56. K. Doroba, J. Kalinowski, J. Kuczmarski, S. Pokorski, J. Rosiek et al., The W L W L scattering at the LHC: improving the selection criteria, arXiv:1201.2768 [INSPIRE].

  57. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

  58. V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Kinematical limits on Higgs boson production via gluon fusion in association with jets, Phys. Rev. D 67 (2003) 073003 [hep-ph/0301013] [INSPIRE].

    ADS  Google Scholar 

  59. F. Campanario, M. Kubocz and D. Zeppenfeld, Gluon-fusion contributions to Φ + 2 Jet production, Phys. Rev. D 84 (2011) 095025 [arXiv:1011.3819] [INSPIRE].

    ADS  Google Scholar 

  60. S.Y. Choi, D.J Miller, M. Mühlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].

    ADS  Google Scholar 

  61. C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in \( H \to ZZ \to 1_1^{+} 1_1^{-} 1_2^{+} 1_2^{-} \) at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].

    ADS  Google Scholar 

  62. A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay HW W/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].

    ADS  Google Scholar 

  63. Q.H. Cao, C.B. Jackson, W.Y. Keung, I. Low and J. Shu, The Higgs Mechanism and Loop-induced Decays of a Scalar into Two Z Bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].

    ADS  Google Scholar 

  64. N. Cabibbo and A. Maksymowicz, Angular Correlations in K e4 Decays and Determination of Low-Energy ππ Phase Shifts, Phys. Rev. 137 (1965) B438 [Erratum ibid. 168 (1968) 1926] [INSPIRE].

    ADS  Google Scholar 

  65. T.L. Trueman, \( \varphi \varphi \) decay as a parity and signature test, Phys. Rev. D 18 (1978) 3423 [INSPIRE].

    ADS  Google Scholar 

  66. J.R. Dell’Aquila and C.A Nelson, P or CP determination by sequential decays: V 1 V 2 modes with decays into \( {\bar{I}_A}{I_B} \) and/or \( {\bar{q}_A}{q_B} \), Phys. Rev. D 33 (1986) 80 [INSPIRE].

    ADS  Google Scholar 

  67. J.C. Collins and D.E Soper, Angular Distribution of Dileptons in High-Energy Hadron Collisions, Phys. Rev. D 16 (1977) 2219 [INSPIRE].

    ADS  Google Scholar 

  68. T. Plehn, D.L. Rainwater and D. Zeppenfeld, A Method for identifying Hτ τe ± μ p T at the CERN LHC, Phys. Rev. D 61 (2000) 093005 [hep-ph/9911385] [INSPIRE].

    ADS  Google Scholar 

  69. T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].

    ADS  Google Scholar 

  70. T. Figy, C. Oleari and D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson production via weak boson fusion, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109] [INSPIRE].

    ADS  Google Scholar 

  71. T. Figy and D. Zeppenfeld, QCD corrections to jet correlations in weak boson fusion, Phys. Lett. B 591 (2004) 297 [hep-ph/0403297] [INSPIRE].

    ADS  Google Scholar 

  72. V. Del Duca, G. Klämke, D. Zeppenfeld, M.L. Mangano, M. Moretti, F. Piccinini et al., Monte Carlo studies of the jet activity in Higgs + 2 jet events, JHEP 10 (2006) 016 [hep-ph/0608158] [INSPIRE].

    ADS  Google Scholar 

  73. J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-Leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE].

    ADS  Google Scholar 

  74. P. Nason, S. Dawson and R.K. Ellis, The One Particle Inclusive Differential Cross-Section for Heavy Quark Production in Hadronic Collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [INSPIRE].

    ADS  Google Scholar 

  75. W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].

    ADS  Google Scholar 

  76. M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].

    ADS  Google Scholar 

  77. S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Top quark distributions in hadronic collisions, Phys. Lett. B 351 (1995) 555 [hep-ph/9503213] [INSPIRE].

    ADS  Google Scholar 

  78. S. Moch and P. Uwer, Heavy-quark pair production at two loops in QCD, Nucl. Phys. Proc. Suppl. 183 (2008) 75 [arXiv:0807.2794] [INSPIRE].

    ADS  Google Scholar 

  79. ATLAS collaboration, Measurement of the b-tag Efficiency in a Sample of Jets Containing Muons with 5 fb-1 of Data from the ATLAS Detector, ATLAS-CONF-2012-043 (2012).

  80. J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W +2 jet and Z +2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].

    ADS  Google Scholar 

  81. C. Oleari and D. Zeppenfeld, QCD corrections to electroweak ℓν jj and ℓ + jj production, Phys. Rev. D 69 (2004) 093004 [hep-ph/0310156] [INSPIRE].

    ADS  Google Scholar 

  82. J.R. Andersen, K. Arnold and D. Zeppenfeld, Azimuthal Angle Correlations for Higgs Boson plus Multi-Jet Events, JHEP 06 (2010) 091 [arXiv:1001.3822] [INSPIRE].

    ADS  Google Scholar 

  83. J.R. Andersen and C.D. White, A New Framework for Multijet Predictions and its application to Higgs Boson production at the LHC, Phys. Rev. D 78 (2008) 051501 [arXiv:0802.2858] [INSPIRE].

    ADS  Google Scholar 

  84. J.R. Andersen, V. Del Duca and C.D. White, Higgs Boson Production in Association with Multiple Hard Jets, JHEP 02 (2009) 015 [arXiv:0808.3696] [INSPIRE].

    ADS  Google Scholar 

  85. J.R. Andersen and J.M. Smillie, Constructing All-Order Corrections to Multi-Jet Rates, JHEP 01 (2010) 039 [arXiv:0908.2786] [INSPIRE].

    ADS  Google Scholar 

  86. J.R. Andersen and J.M. Smillie, The Factorisation of the t-channel Pole in quark-gluon Scattering, Phys. Rev. D 81 (2010) 114021 [arXiv:0910.5113] [INSPIRE].

    ADS  Google Scholar 

  87. G. Klämke and D. Zeppenfeld, Higgs plus two jet production via gluon fusion as a signal at the CERN LHC, JHEP 04 (2007) 052 [hep-ph/0703202] [INSPIRE].

    ADS  Google Scholar 

  88. K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].

    ADS  Google Scholar 

  89. CMS collaboration, S. Chatrchyan et al., Search for neutral Higgs bosons decaying to tau pairs in pp collisions at \( \sqrt {s} = 7 \) TeV, arXiv:1202.4083 [INSPIRE].

  90. A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].

    ADS  Google Scholar 

  91. M. Dasgupta and G.P. Salam, Resummed event-shape variables in DIS, JHEP 08 (2002) 032 [hep-ph/0208073] [INSPIRE].

    ADS  Google Scholar 

  92. A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [INSPIRE].

    ADS  Google Scholar 

  93. A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].

    ADS  Google Scholar 

  94. ALEPH collaboration, A. Heister et al., Studies of QCD at e + e centre-of-mass energies between 91-GeV and 209-GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].

    ADS  Google Scholar 

  95. DELPHI collaboration, J. Abdallah et al., The Measurement of α s from event shapes with the DELPHI detector at the highest LEP energies, Eur. Phys. J. C 37 (2004) 1 [hep-ex/0406011] [INSPIRE].

    ADS  Google Scholar 

  96. L3 collaboration, P. Achard et al., Studies of hadronic event structure in e + e annihilation from 30-GeV to 209-GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].

    ADS  Google Scholar 

  97. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution in electron-positron annihilation, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].

    ADS  Google Scholar 

  98. T. Becher and M.D. Schwartz, A Precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].

    ADS  Google Scholar 

  99. S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, The Principal axis of jets. An Attempt to analyze high-energy collisions as two-body processes, Phys. Lett. 12 (1964) 57 [INSPIRE].

    ADS  Google Scholar 

  100. E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].

    ADS  Google Scholar 

  101. CMS collaboration, V. Khachatryan et al., First Measurement of Hadronic Event Shapes in pp Collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 699 (2011) 48 [arXiv:1102.0068] [INSPIRE].

    ADS  Google Scholar 

  102. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K -clustering algorithms for hadron-hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    ADS  Google Scholar 

  103. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

    ADS  Google Scholar 

  104. S. Catani, G. Turnock and B.R. Webber, Jet broadening measures in e + e annihilation, Phys. Lett. B 295 (1992) 269 [INSPIRE].

    ADS  Google Scholar 

  105. Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].

    ADS  Google Scholar 

  106. M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].

    ADS  Google Scholar 

  107. J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    ADS  Google Scholar 

  108. R.P. Kauffman, S.V. Desai and D. Risal, Production of a Higgs boson plus two jets in hadronic collisions, Phys. Rev. D 55 (1997) 4005 [Erratum ibid. D 58 (1998) 119901] [hep-ph/9610541] [INSPIRE].

    ADS  Google Scholar 

  109. R.P. Kauffman and S.V. Desai, Production of a Higgs pseudoscalar plus two jets in hadronic collisions, Phys. Rev. D 59 (1999) 057504 [hep-ph/9808286] [INSPIRE].

    ADS  Google Scholar 

  110. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Google Scholar 

  111. J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].

    Google Scholar 

  112. R.K. Ellis, An update on the next-to-leading order Monte Carlo MCFM, Nucl. Phys. Proc. Suppl. 160 (2006) 170 [INSPIRE].

    ADS  Google Scholar 

  113. K. Arnold, M. Bähr, G. Bozzi, F. Campanario, C. Englert, T. Figy et al., VBFNLO: A Parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE].

    ADS  Google Scholar 

  114. K. Arnold, J. Bellm, G. Bozzi, M. Brieg, F. Campanario, C. Englert et al., VBFNLO: A parton level Monte Carlo for processes with electroweak bosons — Manual for Version 2.5.0, arXiv:1107.4038 [INSPIRE].

  115. J.R. Andersen, T. Binoth, G. Heinrich and J.M. Smillie, Loop induced interference effects in Higgs Boson plus two jet production at the LHC, JHEP 02 (2008) 057 [arXiv:0709.3513] [INSPIRE].

    ADS  Google Scholar 

  116. A. Bredenstein, K. Hagiwara and B. Jäger, Mixed QCD-electroweak contributions to Higgs-plus-dijet production at the LHC, Phys. Rev. D 77 (2008) 073004 [arXiv:0801.4231] [INSPIRE].

    ADS  Google Scholar 

  117. A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].

    ADS  Google Scholar 

  118. C. Englert, C. Hackstein and M. Spannowsky, Measuring spin and CP from semi-hadronic ZZ decays using jet substructure, Phys. Rev. D 82 (2010) 114024 [arXiv:1010.0676] [INSPIRE].

    ADS  Google Scholar 

  119. S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].

    ADS  Google Scholar 

  120. T. Gleisberg, S. Hoeche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

    ADS  Google Scholar 

  121. S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].

    ADS  Google Scholar 

  122. T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].

    ADS  Google Scholar 

  123. S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

    ADS  Google Scholar 

  124. M. Cacciari, G.P. Salam and G. Soyez, The Anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  Google Scholar 

  125. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Google Scholar 

  126. M. Heldmann, D. Cavalli, An improved tau-identification for the ATLAS experiment, ATL-PHYS-PUB-2006-008, ATL-COM-PHYS-2006-010

  127. CMS collaboration, Tau identification in CMS, PAS-TAU-11-001.

  128. U. Baur and E.W.N. Glover, Tagging the Higgs boson in ppW + W jj processes, Phys. Lett. B 252 (1990) 683 [INSPIRE].

    ADS  Google Scholar 

  129. V.D. Barger, K.M. Cheung, T. Han and D. Zeppenfeld, Single forward jet tagging and central jet vetoing to identify the leptonic W W decay mode of a heavy Higgs boson, Phys. Rev. D 44 (1991) 2701 [Erratum ibid. D 48 (1993) 5444] [INSPIRE].

    ADS  Google Scholar 

  130. D.L. Rainwater, R. Szalapski and D. Zeppenfeld, Probing color singlet exchange in Z + 2-jet events at the CERN LHC, Phys. Rev. D 54 (1996) 6680 [hep-ph/9605444] [INSPIRE].

    ADS  Google Scholar 

  131. E. Gerwick, T. Plehn and S. Schumann, Understanding Jet Scaling and Jet Vetos in Higgs Searches, Phys. Rev. Lett. 108 (2012) 032003 [arXiv:1108.3335] [INSPIRE].

    ADS  Google Scholar 

  132. B.E. Cox, J.R. Forshaw and A.D. Pilkington, Extracting Higgs boson couplings using a jet veto, Phys. Lett. B 696 (2011) 87 [arXiv:1006.0986] [INSPIRE].

    ADS  Google Scholar 

  133. S. Ask, J.H. Collins, J.R. Forshaw, K. Joshi and A.D. Pilkington, Identifying the colour of TeV-scale resonances, JHEP 01 (2012) 018 [arXiv:1108.2396] [INSPIRE].

    ADS  Google Scholar 

  134. V. Hankele, G. Klämke, D. Zeppenfeld and T. Figy, Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC, Phys. Rev. D 74 (2006) 095001 [hep-ph/0609075] [INSPIRE].

    ADS  Google Scholar 

  135. C. Englert, T. Plehn, P. Schichtel and S. Schumann, Establishing Jet Scaling Patterns with a Photon, JHEP 02 (2012) 030 [arXiv:1108.5473] [INSPIRE].

    ADS  Google Scholar 

  136. T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].

    ADS  Google Scholar 

  137. T. Junk, CDF Note 8128 [cdf/doc/statistics/public/8128].

  138. T. Junk, CDF Note 7904 [cdf/doc/statistics/public/7904].

  139. H. Hu and J. Nielsen, Analytic Confidence Level Calculations using the Likelihood Ratio and Fourier Transform, physics/9906010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Englert.

Additional information

ArXiv ePrint: 1203.5788

Rights and permissions

Reprints and permissions

About this article

Cite this article

Englert, C., Spannowsky, M. & Takeuchi, M. Measuring Higgs \( \mathcal{C}\mathcal{P} \) and couplings with hadronic event shapes. J. High Energ. Phys. 2012, 108 (2012). https://doi.org/10.1007/JHEP06(2012)108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)108

Keywords

Navigation