Skip to main content
Log in

Improving NLO-parton shower matched simulations with higher order matrix elements

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In recent times the algorithms for the simulation of hadronic collisions have been subject to two substantial improvements: the inclusion, within parton showering, of exact higher order tree level matrix elements (Meps) and, separately, next-to-leading order corrections (Nlops). In this work we examine the key criteria to be met in merging the two approaches in such a way that the accuracy of both is preserved, in the framework of the Powheg approach to Nlops. We then ask to what extent these requirements may be fulfilled using existing simulations, without modifications. The result of this study is a pragmatic proposal for merging Meps and Nlops events to yield much improved Menlops event samples. We apply this method to W boson and top quark pair production. In both cases results for distributions within the remit of the NLO calculations exhibit no discernible changes with respect to the pure Nlops prediction; conversely, those sensitive to the distribution of multiple hard jets assume, exactly, the form of the corresponding Meps results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].

    Article  ADS  Google Scholar 

  2. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [SPIRES].

    Article  ADS  Google Scholar 

  3. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [SPIRES].

    Article  ADS  Google Scholar 

  4. S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP 08 (2003) 007 [hep-ph/0305252] [SPIRES].

    Article  ADS  Google Scholar 

  5. P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [SPIRES].

    Article  ADS  Google Scholar 

  6. S. Frixione, P. Nason and G. Ridolfi, A positive-weight Next-to-Leading-Order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [SPIRES].

    Article  ADS  Google Scholar 

  7. S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [SPIRES].

    Article  ADS  Google Scholar 

  8. K. Hamilton, P. Richardson and J. Tully, A positive-weight Next-to-Leading Order Monte Carlo simulation of Drell-Yan vector boson production, JHEP 10 (2008) 015 [arXiv:0806.0290] [SPIRES].

    Article  ADS  Google Scholar 

  9. S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [SPIRES].

    Article  ADS  Google Scholar 

  10. K. Hamilton, P. Richardson and J. Tully, A positive-weight Next-to-Leading Order Monte Carlo simulation for Higgs boson production, JHEP 04 (2009) 116 [arXiv:0903.4345] [SPIRES].

    Article  ADS  Google Scholar 

  11. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [SPIRES].

    Article  ADS  Google Scholar 

  12. S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [arXiv:0907.4076] [SPIRES].

    Article  ADS  Google Scholar 

  13. P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037 [arXiv:0911.5299] [SPIRES].

    Article  Google Scholar 

  14. P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP 04 (2010) 110 [1002.4293] [SPIRES].

    Article  Google Scholar 

  15. M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [SPIRES].

    Article  ADS  Google Scholar 

  16. J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [SPIRES].

    Article  ADS  Google Scholar 

  17. S. Catani, F. Krauss, R. Kuhn, and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [SPIRES].

    Article  ADS  Google Scholar 

  18. F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [SPIRES].

    Article  ADS  Google Scholar 

  19. L. Lonnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [SPIRES].

    Article  ADS  Google Scholar 

  20. M. Mangano, The so-called MLM prescription for ME/PS matching, talk presented at the Fermilab ME/MC Tuning Workshop, October 4, U.S.A. (2002), see http://www-cpd.fnal.gov/personal/mrenna/tuning/nov2002/mlm.pdf.

  21. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].

    Article  ADS  Google Scholar 

  22. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  23. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].

    Article  ADS  Google Scholar 

  24. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, 1002.2581 [SPIRES].

  25. W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [SPIRES].

    ADS  Google Scholar 

  26. N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [SPIRES].

    Article  ADS  Google Scholar 

  27. Z. Nagy and D.E. Soper, Parton showers with quantum interference, JHEP 09 (2007) 114 [arXiv:0706.0017] [SPIRES].

    Article  ADS  Google Scholar 

  28. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [SPIRES].

    ADS  Google Scholar 

  29. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].

    Article  ADS  Google Scholar 

  30. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  31. J. Alwall et. al., MadGraph/MadEvent Wiki, http://cp3wks05.fynu.ucl.ac.be/twiki/bin/view/Main/WebHome, (2007).

  32. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].

    Article  ADS  Google Scholar 

  33. S. Frixione, P. Nason and G. Ridolfi, The POWHEG-hvq manual version 1.0, arXiv:0707.3081 [SPIRES].

  34. A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Uncertainties of predictions from parton distributions. 1: experimental errors, Eur. Phys. J. C 28 (2003) 455 [hep-ph/0211080] [SPIRES].

    ADS  Google Scholar 

  35. M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches Accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [SPIRES].

  36. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].

    ADS  Google Scholar 

  37. Y.L. Dokshitzer, D. Diakonov and S.I. Troian, Hard processes in quantum chromodynamics, Phys. Rept. 58 (1980) 269 [SPIRES].

    Article  ADS  Google Scholar 

  38. F. Krauss, A. Schalicke, S. Schumann and G. Soff, Simulating W/Z+jets production at the CERN LHC, Phys. Rev. D 72 (2005) 054017 [hep-ph/0503280] [SPIRES].

    ADS  Google Scholar 

  39. M.H. Seymour, Matrix element corrections to parton shower algorithms, Comp. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [SPIRES].

    Article  ADS  Google Scholar 

  40. M.H. Seymour, A simple prescription for first order corrections to quark scattering and annihilation processes, Nucl. Phys. B 436 (1995) 443 [hep-ph/9410244] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Hamilton.

Additional information

ArXiv ePrint: 1004.1764v2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, K., Nason, P. Improving NLO-parton shower matched simulations with higher order matrix elements. J. High Energ. Phys. 2010, 39 (2010). https://doi.org/10.1007/JHEP06(2010)039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2010)039

Keywords

Navigation