Skip to main content
Log in

Radiative electroweak symmetry breaking in a Little Higgs model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a new Little Higgs model, motivated by the deconstruction of a five-dimensional gauge-Higgs model. The approximate global symmetry is SO(5)0 × SO(5)1, breaking to SO(5), with a gauged subgroup of [SU(2)0L × U(1)0R ] × O(4)1, breaking to SU(2) L ×U(1) Y . Radiative corrections produce an additional small vacuum misalignment, breaking the electroweak symmetry down to U(1)EM. Novel features of this model are: the only un-eaten pseudo-Goldstone boson in the effective theory is the Higgs boson; the model contains a custodial symmetry, which ensures that \( \widehat{T} = 0 \) at tree-level; and the potential for the Higgs boson is generated entirely through one-loop radiative corrections. A small negative mass-squared in the Higgs potential is obtained by a cancellation between the contribution of two heavy partners of the top quark, which is readily achieved over much of the parameter space. We can then obtain both a vacuum expectation value of v = 246 GeV and a light Higgs boson mass, which is strongly correlated with the masses of the two heavy top quark partners. For a scale of the global symmetry breaking of f = 1 TeV and using a single cutoff for the fermion loops, the Higgs boson mass satisfies 120 GeV ≲ M H ≲ 150 GeV over much of the range of parameter space. For f raised to 10 TeV, these values increase by about 40 GeV. Effects at the ultraviolet cutoff scale may also raise the predicted values of the Higgs boson mass, but the model still favors M H ≲ 200GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Georgi and A. Pais, Calculability and Naturalness in Gauge Theories, Phys. Rev. D 10 (1974) 539 [SPIRES].

    ADS  Google Scholar 

  2. H. Georgi and A. Pais, Vacuum Symmetry and the PseudoGoldstone Phenomenon, Phys. Rev. D 12 (1975) 508 [SPIRES].

    ADS  Google Scholar 

  3. N. Arkani-Hamed, A.G. Cohen, T. Gregoire and J.G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, JHEP 08 (2002) 020 [hep-ph/0202089] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. N. Arkani-Hamed et al., The Minimal Moose for a Little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Gregoire and J.G. Wacker, Mooses, Topology and Higgs, JHEP 08 (2002) 019 [hep-ph/0206023] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. I. Low, W. Skiba and D. Tucker-Smith, Little Higgses from an antisymmetric condensate, Phys. Rev. D 66 (2002) 072001 [hep-ph/0207243] [SPIRES].

    ADS  Google Scholar 

  8. M. Schmaltz, Physics beyond the standard model (Theory): Introducing the little Higgs, Nucl. Phys. Proc. Suppl. 117 (2003) 40 [hep-ph/0210415] [SPIRES].

    Article  ADS  Google Scholar 

  9. D.E. Kaplan and M. Schmaltz, The little Higgs from a simple group, JHEP 10 (2003) 039 [hep-ph/0302049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Chang and J.G. Wacker, Little Higgs and custodial SU(2), Phys. Rev. D 69 (2004) 035002 [hep-ph/0303001] [SPIRES].

    ADS  Google Scholar 

  11. W. Skiba and J. Terning, A simple model of two little Higgses, Phys. Rev. D 68 (2003) 075001 [hep-ph/0305302] [SPIRES].

    ADS  Google Scholar 

  12. S. Chang, A ’littlest Higgs’ model with custodial SU(2) symmetry, JHEP 12 (2003) 057 [hep-ph/0306034] [SPIRES].

    Article  ADS  Google Scholar 

  13. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].

    Article  ADS  Google Scholar 

  14. H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].

    Article  ADS  Google Scholar 

  15. E. Katz, J.-y. Lee, A.E. Nelson and D.G.E. Walker, A composite little Higgs model, JHEP 10 (2005) 088 [hep-ph/0312287] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Birkedal, Z. Chacko and M.K. Gaillard, Little supersymmetry and the supersymmetric little hierarchy problem, JHEP 10 (2004) 036 [hep-ph/0404197] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. D.E. Kaplan, M. Schmaltz and W. Skiba, Little Higgses and turtles, Phys. Rev. D 70 (2004) 075009 [hep-ph/0405257] [SPIRES].

    ADS  Google Scholar 

  19. M. Schmaltz, The simplest little Higgs, JHEP 08 (2004) 056 [hep-ph/0407143] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. I. Low, T parity and the littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [SPIRES].

    Article  ADS  Google Scholar 

  21. K. Agashe, R. Contino and A. Pomarol, The Minimal Composite Higgs Model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].

    Article  ADS  Google Scholar 

  22. P. Batra and D.E. Kaplan, Perturbative, non-supersymmetric completions of the little Higgs, JHEP 03 (2005) 028 [hep-ph/0412267] [SPIRES].

    Article  ADS  Google Scholar 

  23. J. Thaler and I. Yavin, The littlest Higgs in anti-de Sitter space, JHEP 08 (2005) 022 [hep-ph/0501036] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [SPIRES].

    ADS  Google Scholar 

  25. M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [SPIRES].

    Article  ADS  Google Scholar 

  26. J. Hubisz and P. Meade, Phenomenology of the littlest Higgs with T-parity, Phys. Rev. D 71 (2005) 035016 [hep-ph/0411264] [SPIRES].

    ADS  Google Scholar 

  27. A. Belyaev, C.-R. Chen, K. Tobe and C.P. Yuan, Phenomenology of littlest Higgs model with T parity: including effects of T odd fermions, Phys. Rev. D 74 (2006) 115020 [hep-ph/0609179] [SPIRES].

    ADS  Google Scholar 

  28. J.A. Casas, J.R. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. II: Little Higgs models, JHEP 03 (2005) 038 [hep-ph/0502066] [SPIRES].

    Article  ADS  Google Scholar 

  29. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].

    ADS  Google Scholar 

  30. A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs Unification and Radiative Electroweak Symmetry Breaking in Warped Extra Dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [SPIRES].

    ADS  Google Scholar 

  31. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Z b anti-b, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].

    ADS  Google Scholar 

  32. M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES].

    ADS  Google Scholar 

  33. B. Grinstein, R. Kelley and P. Uttayarat, Hidden fine tuning in the quark sector of little Higgs models, JHEP 09 (2009) 040 [arXiv:0904.1622] [SPIRES].

    Article  ADS  Google Scholar 

  34. R. Barbieri and G.F. Giudice, Upper Bounds On Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 063 [SPIRES].

    Article  ADS  Google Scholar 

  35. R. Sekhar Chivukula, S. Di Chiara, R. Foadi and E.H. Simmons, The Limits of Custodial Symmetry, Phys. Rev. D 80 (2009) 095001 [arXiv:0908.1079] [SPIRES].

    ADS  Google Scholar 

  36. R. Foadi, J.T. Laverty, C.R. Schmidt, and J. Yu, in preparation.

  37. M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza-Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [SPIRES].

    ADS  Google Scholar 

  39. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [SPIRES].

    Article  ADS  Google Scholar 

  40. R.S. Chivukula, E.H. Simmons, H.-J. He, M. Kurachi and M. Tanabashi, Universal non-oblique corrections in Higgsless models and beyond, Phys. Lett. B 603 (2004) 210 [hep-ph/0408262] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl R. Schmidt.

Additional information

ArXiv ePrint: 1001.0584

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foadi, R., Laverty, J.T., Schmidt, C.R. et al. Radiative electroweak symmetry breaking in a Little Higgs model. J. High Energ. Phys. 2010, 26 (2010). https://doi.org/10.1007/JHEP06(2010)026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2010)026

Keywords

Navigation