Soft gluon emission at two loops in full color

Abstract

The soft emission factor is a central ingredient in the factorization of generic n-particle gauge theory amplitudes with one soft gluon in the external state. We present the complete two-loop soft factor, capturing the leading power behavior in the soft-gluon momentum. At two loops, the color structure and the kinematic dependence of the soft factor become nontrivial as the soft gluon can couple to three hard partons for the first time (tripole terms). The nontrivial kinematic dependence of the tripole terms is of uniform, maximal transcendental weight, and can be expressed (in a “Euclidean” region) in terms of single-valued harmonic polylogarithms. Our results are consistent with the behavior of the recently computed symbol of the two-loop five-particle amplitude in \( \mathcal{N} \) = 4 super-Yang-Mills theory. In the limit where the outgoing soft gluon is also collinear with an incoming hard parton, potentially dangerous factorization-violating terms can arise.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    L.J. Dixon, Calculating scattering amplitudes efficiently, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, CO, USA, 4–30 June 1995, pg. 539 [hep-ph/9601359] [INSPIRE].

  7. [7]

    A. Bassetto, M. Ciafaloni and G. Marchesini, Jet structure and infrared sensitive quantities in perturbative QCD, Phys. Rept.100 (1983) 201 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    F.A. Berends and W.T. Giele, Multiple soft gluon radiation in parton processes, Nucl. Phys.B 313 (1989) 595 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev.D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].

  10. [10]

    W.T. Giele and E.W.N. Glover, Higher order corrections to jet cross-sections in e+eannihilation, Phys. Rev.D 46 (1992) 1980 [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    W.T. Giele, E.W.N. Glover and D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders, Nucl. Phys.B 403 (1993) 633 [hep-ph/9302225] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys.B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].

  13. [13]

    S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys.B 570 (2000) 287 [hep-ph/9908523] [INSPIRE].

  14. [14]

    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys.5 (1989) 1 [hep-ph/0409313] [INSPIRE].

  15. [15]

    G.F. Sterman, Partons, factorization and resummation, TASI 95, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, CO, U.S.A., 4–30 June 1995, pg. 327 [hep-ph/9606312] [INSPIRE].

  16. [16]

    G.F. Sterman, QCD and jets, in Physics in D ≥ 4. Proceedings, Theoretical Advanced Study Institute in elementary particle physics, TASI 2004, Boulder, CO, U.S.A., 6 June–2 July 2004, pg. 67 [hep-ph/0412013] [INSPIRE].

  17. [17]

    Z. Bern, G. Chalmers, L.J. Dixon and D.A. Kosower, One loop N gluon amplitudes with maximal helicity violation via collinear limits, Phys. Rev. Lett.72 (1994) 2134 [hep-ph/9312333] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e+eto four partons, Nucl. Phys.B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].

  19. [19]

    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. [20]

    S. Caron-Huot, L.J. Dixon, F. Dulat, M. von Hippel, A.J. McLeod and G. Papathanasiou, Six-gluon amplitudes in planar N = 4 super-Yang-Mills theory at six and seven loops, JHEP08 (2019) 016 [arXiv:1903.10890] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    S. Weinberg, Infrared photons and gravitons, Phys. Rev.140 (1965) B516 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys.B 447 (1995) 465 [hep-ph/9503236] [INSPIRE].

  23. [23]

    Z. Bern, V. Del Duca and C.R. Schmidt, The infrared behavior of one loop gluon amplitudes at next-to-next-to-leading order, Phys. Lett.B 445 (1998) 168 [hep-ph/9810409] [INSPIRE].

  24. [24]

    S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys.B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].

  25. [25]

    Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP11 (2013) 080 [arXiv:1309.4391] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett.B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  27. [27]

    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 023 [arXiv:1108.4461] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. [29]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge, U.K. (2016) [arXiv:1212.5605] [INSPIRE].

    Google Scholar 

  30. [30]

    A.V. Kotikov and L.N. Lipatov, On the highest transcendentality in N = 4 SUSY, Nucl. Phys.B 769 (2007) 217 [hep-th/0611204] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. Lett.122 (2019) 121603 [arXiv:1812.08941] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, Analytic result for a two-loop five-particle amplitude, Phys. Rev. Lett.122 (2019) 121602 [arXiv:1812.11057] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  33. [33]

    S. Catani, D. de Florian and G. Rodrigo, Space-like (versus time-like) collinear limits in QCD: is factorization violated?, JHEP07 (2012) 026 [arXiv:1112.4405] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    J.R. Forshaw, M.H. Seymour and A. Siodmok, On the breaking of collinear factorization in QCD, JHEP11 (2012) 066 [arXiv:1206.6363] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP08 (2006) 059 [hep-ph/0604094] [INSPIRE].

  36. [36]

    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: colour basis independent calculation, JHEP09 (2008) 128 [arXiv:0808.1269] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  38. [38]

    N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys.B 531 (1998) 365 [hep-ph/9803241] [INSPIRE].

  39. [39]

    S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev.D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].

  40. [40]

    L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett.102 (2009) 162001 [Erratum ibid.111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].

  43. [43]

    Ø. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett.117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett.B 539 (2002) 59 [hep-ph/0204229] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  45. [45]

    I. Feige and M.D. Schwartz, Hard-soft-collinear factorization to all orders, Phys. Rev.D 90 (2014) 105020 [arXiv:1403.6472] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    A.J. Larkoski, D. Neill and I.W. Stewart, Soft theorems from effective field theory, JHEP06 (2015) 077 [arXiv:1412.3108] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. [47]

    S.D. Badger and E.W.N. Glover, Two loop splitting functions in QCD, JHEP07 (2004) 040 [hep-ph/0405236] [INSPIRE].

  48. [48]

    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.105 (1993) 279.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  49. [49]

    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].

  50. [50]

    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys.B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  52. [52]

    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

  53. [53]

    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].

  55. [55]

    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys.B 379 (1992) 451 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. [56]

    Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev.D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].

  57. [57]

    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett.91 (2003) 251602 [hep-th/0309040] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. [58]

    V. Lysov, S. Pasterski and A. Strominger, Low’s subleading soft theorem as a symmetry of QED, Phys. Rev. Lett.113 (2014) 111601 [arXiv:1407.3814] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    Ø. Almelid, C. Duhr, E. Gardi, A. McLeod and C.D. White, Bootstrapping the QCD soft anomalous dimension, JHEP09 (2017) 073 [arXiv:1706.10162] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  60. [60]

    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP12 (2011) 011 [arXiv:1102.0062] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  62. [62]

    F.C.S. Brown, Single-valued multiple polylogarithms in one variable, Compt. Rend. Acad. Sci.338 (2004) 527.

    MATH  Google Scholar 

  63. [63]

    L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP10 (2012) 074 [arXiv:1207.0186] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

  65. [65]

    C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP08 (2019) 135 [arXiv:1904.07279] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  66. [66]

    Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 super Yang-Mills, Phys. Lett.B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].

  67. [67]

    V.A. Smirnov, Analytical result for dimensionally regularized massive on-shell planar double box, Phys. Lett.B 524 (2002) 129 [hep-ph/0111160] [INSPIRE].

  68. [68]

    J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett.B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].

  69. [69]

    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett.B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

  70. [70]

    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett.B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  71. [71]

    Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP08 (2004) 012 [hep-ph/0404293] [INSPIRE].

  72. [72]

    C. Duhr, T. Gehrmann and M. Jaquier, Two-loop splitting amplitudes and the single-real contribution to inclusive Higgs production at N3LO, JHEP02 (2015) 077 [arXiv:1411.3587] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP03 (2002) 018 [hep-ph/0201161] [INSPIRE].

  74. [74]

    E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys.B 605 (2001) 467 [hep-ph/0102201] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    A. Gao, H.T. Li, I. Moult and H.X. Zhu, Precision QCD event shapes at hadron colliders: the transverse energy-energy correlator in the back-to-back limit, Phys. Rev. Lett.123 (2019) 062001 [arXiv:1901.04497] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    C.J. Bomhof, P.J. Mulders and F. Pijlman, Gauge link structure in quark-quark correlators in hard processes, Phys. Lett.B 596 (2004) 277 [hep-ph/0406099] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    J. Collins and J.-W. Qiu, kTfactorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions, Phys. Rev.D 75 (2007) 114014 [arXiv:0705.2141] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    W. Vogelsang and F. Yuan, Hadronic dijet imbalance and transverse-momentum dependent parton distributions, Phys. Rev.D 76 (2007) 094013 [arXiv:0708.4398] [INSPIRE].

    ADS  Google Scholar 

  79. [79]

    T.C. Rogers and P.J. Mulders, No generalized TMD-factorization in hadro-production of high transverse momentum hadrons, Phys. Rev.D 81 (2010) 094006 [arXiv:1001.2977] [INSPIRE].

    ADS  Google Scholar 

  80. [80]

    J.R. Gaunt and T. Kasemets, Transverse momentum dependence in double parton scattering, Adv. High Energy Phys.2019 (2019) 3797394 [arXiv:1812.09099] [INSPIRE].

    Article  Google Scholar 

  81. [81]

    M. Diehl, J.R. Gaunt, P. Plößl and A. Schäfer, Two-loop splitting in double parton distributions, SciPost Phys.7 (2019) 017 [arXiv:1902.08019] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    M.G.A. Buffing, M. Diehl and T. Kasemets, Transverse momentum in double parton scattering: factorisation, evolution and matching, JHEP01 (2018) 044 [arXiv:1708.03528] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  83. [83]

    M. Balsiger, T. Becher and D.Y. Shao, Non-global logarithms in jet and isolation cone cross sections, JHEP08 (2018) 104 [arXiv:1803.07045] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and resummation for jet processes, JHEP11 (2016) 019 [Erratum ibid.05 (2017) 154] [arXiv:1605.02737] [INSPIRE].

  85. [85]

    A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP08 (2004) 062 [hep-ph/0407287] [INSPIRE].

    MATH  Article  Google Scholar 

  86. [86]

    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The beam thrust cross section for Drell-Yan at NNLL order, Phys. Rev. Lett.106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].

    ADS  Article  Google Scholar 

  87. [87]

    T. Becher and X. Garcia i Tormo, Factorization and resummation for transverse thrust, JHEP06 (2015) 071 [arXiv:1502.04136] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  88. [88]

    I.Z. Rothstein and I.W. Stewart, An effective field theory for forward scattering and factorization violation, JHEP08 (2016) 025 [arXiv:1601.04695] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  89. [89]

    M.D. Schwartz, K. Yan and H.X. Zhu, Collinear factorization violation and effective field theory, Phys. Rev.D 96 (2017) 056005 [arXiv:1703.08572] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  90. [90]

    M.D. Schwartz, K. Yan and H.X. Zhu, Factorization violation and scale invariance, Phys. Rev.D 97 (2018) 096017 [arXiv:1801.01138] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  91. [91]

    C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N3LO QCD, Phys. Lett.B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].

    ADS  Article  Google Scholar 

  92. [92]

    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, Soft-virtual corrections to Higgs production at N3LO, Phys. Rev.D 91 (2015) 036008 [arXiv:1412.2771] [INSPIRE].

    ADS  Google Scholar 

  93. [93]

    S. Catani, D. Colferai and A. Torrini, Triple (and quadruple) soft-gluon radiation in QCD hard scattering, JHEP01 (2020) 118 [arXiv:1908.01616] [INSPIRE].

    ADS  Article  Google Scholar 

  94. [94]

    V. Del Duca, C. Duhr, R. Haindl, A. Lazopoulos and M. Michel, Tree-level splitting amplitudes for a quark into four collinear partons, JHEP02 (2020) 189 [arXiv:1912.06425] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hua Xing Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1912.09370

Electronic supplementary material

ESM 1

(ZIP 5 kb)

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dixon, L.J., Herrmann, E., Yan, K. et al. Soft gluon emission at two loops in full color. J. High Energ. Phys. 2020, 135 (2020). https://doi.org/10.1007/JHEP05(2020)135

Download citation

Keywords

  • Perturbative QCD
  • Scattering Amplitudes