Lattice black branes: sphere packing in general relativity

  • Óscar J. C. Dias
  • Jorge E. Santos
  • Benson Way
Open Access
Regular Article - Theoretical Physics
  • 5 Downloads

Abstract

We perturbatively construct asymptotically \( {\mathrm{\mathbb{R}}}^{1,3}\times {\mathbb{T}}^2 \) black branes with multiple inhomogeneous directions and show that some of them are thermodynamically preferred over uniform branes in both the microcanonical and canonical ensembles. This demonstrates that, unlike five-dimensional black strings, the instability of some unstable black branes has a plausible endpoint that does not require a violation of cosmic censorship.

Keywords

Black Holes Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Ó.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos and R. Emparan, Instability and new phases of higher-dimensional rotating black holes, Phys. Rev. D 80 (2009) 111701 [arXiv:0907.2248] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Ó.J.C. Dias, P. Figueras, R. Monteiro, H.S. Reall and J.E. Santos, An instability of higher-dimensional rotating black holes, JHEP 05 (2010) 076 [arXiv:1001.4527] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    G.S. Hartnett and J.E. Santos, Non-Axisymmetric Instability of Rotating Black Holes in Higher Dimensions, Phys. Rev. D 88 (2013) 041505 [arXiv:1306.4318] [INSPIRE].ADSGoogle Scholar
  5. [5]
    Ó.J.C. Dias, G.S. Hartnett and J.E. Santos, Quasinormal modes of asymptotically flat rotating black holes, Class. Quant. Grav. 31 (2014) 245011 [arXiv:1402.7047] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J.E. Santos and B. Way, Neutral Black Rings in Five Dimensions are Unstable, Phys. Rev. Lett. 114 (2015) 221101 [arXiv:1503.00721] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Emparan and H.S. Reall, A Rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    Ó.J.C. Dias, J.E. Santos and B. Way, Rings, Ripples and Rotation: Connecting Black Holes to Black Rings, JHEP 07 (2014) 045 [arXiv:1402.6345] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    L. Lehner and F. Pretorius, Black Strings, Low Viscosity Fluids and Violation of Cosmic Censorship, Phys. Rev. Lett. 105 (2010) 101102 [arXiv:1006.5960] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    P. Figueras, M. Kunesch and S. Tunyasuvunakool, End Point of Black Ring Instabilities and the Weak Cosmic Censorship Conjecture, Phys. Rev. Lett. 116 (2016) 071102 [arXiv:1512.04532] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Figueras, M. Kunesch, L. Lehner and S. Tunyasuvunakool, End Point of the Ultraspinning Instability and Violation of Cosmic Censorship, Phys. Rev. Lett. 118 (2017) 151103 [arXiv:1702.01755] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.S. Gubser, On nonuniform black branes, Class. Quant. Grav. 19 (2002) 4825 [hep-th/0110193] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    T. Wiseman, Static axisymmetric vacuum solutions and nonuniform black strings, Class. Quant. Grav. 20 (2003) 1137 [hep-th/0209051] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    H. Kudoh and T. Wiseman, Connecting black holes and black strings, Phys. Rev. Lett. 94 (2005) 161102 [hep-th/0409111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    E. Sorkin, A Critical dimension in the black string phase transition, Phys. Rev. Lett. 93 (2004) 031601 [hep-th/0402216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    P. Figueras, K. Murata and H.S. Reall, Stable non-uniform black strings below the critical dimension, JHEP 11 (2012) 071 [arXiv:1209.1981] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    R. Emparan, R. Suzuki and K. Tanabe, Evolution and End Point of the Black String Instability: Large D Solution, Phys. Rev. Lett. 115 (2015) 091102 [arXiv:1506.06772] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Rozali and A. Vincart-Emard, On Brane Instabilities in the Large D Limit, JHEP 08 (2016) 166 [arXiv:1607.01747] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    A. Donos and J.P. Gauntlett, Minimally packed phases in holography, JHEP 03 (2016) 148 [arXiv:1512.06861] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    M. Headrick, S. Kitchen and T. Wiseman, A New approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    P. Figueras, J. Lucietti and T. Wiseman, Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua, Class. Quant. Grav. 28 (2011) 215018 [arXiv:1104.4489] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    T. Wiseman, Numerical construction of static and stationary black holes, in Black Holes in Higher Dimensions, G.T. Horowitz ed., Cambridge University Press (2012) [arXiv:1107.5513] [INSPIRE].
  27. [27]
    Ó.J.C. Dias, J.E. Santos and B. Way, Numerical Methods for Finding Stationary Gravitational Solutions, Class. Quant. Grav. 33 (2016) 133001 [arXiv:1510.02804] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    T. Harmark and N.A. Obers, General definition of gravitational tension, JHEP 05 (2004) 043 [hep-th/0403103] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Attems, Y. Bea, J. Casalderrey-Solana, D. Mateos, M. Triana and M. Zilhao, Phase Transitions, Inhomogeneous Horizons and Second-Order Hydrodynamics, JHEP 06 (2017) 129 [arXiv:1703.02948] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    R.A. Janik, J. Jankowski and H. Soltanpanahi, Real-Time dynamics and phase separation in a holographic first order phase transition, Phys. Rev. Lett. 119 (2017) 261601 [arXiv:1704.05387] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Hanada and T. Nishioka, Cascade of Gregory-Laflamme Transitions and U(1) Breakdown in Super Yang-Mills, JHEP 09 (2007) 012 [arXiv:0706.0188] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Óscar J. C. Dias
    • 1
  • Jorge E. Santos
    • 2
  • Benson Way
    • 3
  1. 1.STAG Research Centre and Mathematical SciencesUniversity of SouthamptonSouthamptonU.K.
  2. 2.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.
  3. 3.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations