α-corrected black holes in String Theory

  • Pablo A. Cano
  • Patrick Meessen
  • Tomás Ortín
  • Pedro F. Ramírez
Open Access
Regular Article - Theoretical Physics


We consider the well-known solution of the Heterotic Superstring effective action to zeroth order in α that describes the intersection of a fundamental string with momentum and a solitonic 5-brane and which gives a 3-charge, static, extremal, supersymmetric black hole in 5 dimensions upon dimensional reduction on T5. We compute explicitly the first-order in α corrections to this solution, including SU(2) Yang-Mills fields which can be used to cancel some of these corrections and we study the main properties of this α-corrected solution: supersymmetry, values of the near-horizon and asymptotic charges, behavior under α-corrected T-duality, value of the entropy (using Wald formula directly in 10 dimensions), existence of small black holes etc. The value obtained for the entropy agrees, within the limits of approximation, with that obtained by microscopic methods. The α corrections coming from Wald’s formula prove crucial for this result.


Black Holes in String Theory Black Holes Superstrings and Heterotic Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038].
  3. [3]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  4. [4]
    T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys. 49 (2001) 3 [hep-th/0007195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    P. Dominis Prester, α -Corrections and Heterotic Black Holes, 2010, arXiv:1001.1452, [INSPIRE].
  6. [6]
    A. Castro and S. Murthy, Corrections to the statistical entropy of five dimensional black holes, JHEP 06 (2009) 024 [arXiv:0807.0237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S. Chimento, P. Meessen, T. Ortín, P.F. Ramirez and A. Ruiperez, On a family of α -corrected solutions of the Heterotic Superstring effective action, arXiv:1803.04463 [INSPIRE].
  8. [8]
    C.G. Callan Jr., J.A. Harvey and A. Strominger, World sheet approach to heterotic instantons and solitons, Nucl. Phys. B 359 (1991) 611 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E. Bergshoeff, B. Janssen and T. Ortín, Solution generating transformations and the string effective action, Class. Quant. Grav. 13 (1996) 321 [hep-th/9506156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.D. Edelstein, K. Sfetsos, J.A. Sierra-Garcia and A. Vilar López, T-duality and high-derivative gravity theories: the BTZ black hole/string paradigm, arXiv:1803.04517 [INSPIRE].
  11. [11]
    P. Dominis Prester and T. Terzic, α -exact entropies for BPS and non-BPS extremal dyonic black holes in heterotic string theory from ten-dimensional supersymmetry, JHEP 12 (2008) 088 [arXiv:0809.4954] [INSPIRE].
  12. [12]
    E.A. Bergshoeff and M. de Roo, The Quartic Effective Action of the Heterotic String and Supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Ortín, Gravity and Strings, second edition, Cambridge University Press, Cambridge U.K. (2015).CrossRefzbMATHGoogle Scholar
  14. [14]
    W.A. Chemissany, M. de Roo and S. Panda, α -Corrections to Heterotic Superstring Effective Action Revisited, JHEP 08 (2007) 037 [arXiv:0706.3636] [INSPIRE].
  15. [15]
    E.A. Bergshoeff, R. Kallosh and T. Ortín, Supersymmetric string waves, Phys. Rev. D 47 (1993) 5444 [hep-th/9212030] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    A.A. Tseytlin, Extreme dyonic black holes in string theory, Mod. Phys. Lett. A 11 (1996) 689 [hep-th/9601177] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Cvetič and A.A. Tseytlin, Solitonic strings and BPS saturated dyonic black holes, Phys. Rev. D 53 (1996) 5619 [Erratum ibid. D 55 (1997) 3907] [hep-th/9512031] [INSPIRE].
  18. [18]
    M.J. Duff and J.X. Lu, Elementary five-brane solutions of D = 10 supergravity, Nucl. Phys. B 354 (1991) 141 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J.M. Maldacena, Black holes in string theory, Ph.D. Thesis, Princeton University, Princeton U.S.A. (1996) [hep-th/9607235].
  20. [20]
    A.W. Peet, TASI lectures on black holes in string theory, in Proceedings of Strings, branes and gravity, TASI’99, Boulder U.S.A. (1999), J.A. Harvey, S. Kachru and E. Silverstein eds., World Scientific, New York U.S.A. (2001) [hep-th/0008241].
  21. [21]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    P.A. Cano, P. Meessen, T. Ortín and P.F. Ramírez, Non-Abelian black holes in string theory, JHEP 12 (2017) 092 [arXiv:1704.01134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Bellorín and T. Ortín, Characterization of all the supersymmetric solutions of gauged N = 1, d = 5 supergravity, JHEP 08 (2007) 096 [arXiv:0705.2567] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    P. Bueno, P. Meessen, T. Ortín and P.F. Ramírez, Resolution of SU(2) monopole singularities by oxidation, Phys. Lett. B 746 (2015) 109 [arXiv:1503.01044] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    P. Meessen, T. Ortín and P.F. Ramírez, Non-Abelian, supersymmetric black holes and strings in 5 dimensions, JHEP 03 (2016) 112 [arXiv:1512.07131] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Strominger, Heterotic solitons, Nucl. Phys. B 343 (1990) 167 [Erratum ibid. B 353 (1991) 565] [INSPIRE].
  27. [27]
    P.A. Cano, T. Ortín and P.F. Ramirez, A gravitating Yang-Mills instanton, JHEP 07 (2017) 011 [arXiv:1704.00504] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    E. Bergshoeff and M. de Roo, Supersymmetric Chern-Simons Terms in Ten-dimensions, Phys. Lett. B 218 (1989) 210 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    P. Cano, S. Chimento, P. Meessen, T. Ortín, P.F. Ramírez and A. Ruipérez, in preparation.Google Scholar
  30. [30]
    P.A. Cano and T. Ortín, Non-perturbative decay of Non-Abelian hair, JHEP 12 (2017) 091 [arXiv:1710.05052] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Y. Tachikawa, Black hole entropy in the presence of Chern-Simons terms, Class. Quant. Grav. 24 (2007) 737 [hep-th/0611141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A. Dabholkar, R. Kallosh and A. Maloney, A Stringy cloak for a classical singularity, JHEP 12 (2004) 059 [hep-th/0410076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Alishahiha, F. Ardalan, H. Ebrahim and S. Mukhopadhyay, On 5D Small Black Holes, JHEP 03 (2008) 074 [arXiv:0712.4070] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    K. Hanaki, K. Ohashi and Y. Tachikawa, Supersymmetric Completion of an R 2 term in Five-dimensional Supergravity, Prog. Theor. Phys. 117 (2007) 533 [hep-th/0611329] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    N. Halmagyi, D. Israel and E.E. Svanes, The Abelian Heterotic Conifold, JHEP 07 (2016) 029 [arXiv:1601.07561] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    R. Kallosh and T. Ortín, Exact SU(2) × U(1) stringy black holes, Phys. Rev. D 50 (1994) R7123 [hep-th/9409060].ADSMathSciNetGoogle Scholar
  37. [37]
    B. Sahoo and A. Sen, α -corrections to extremal dyonic black holes in heterotic string theory, JHEP 01 (2007) 010 [hep-th/0608182] [INSPIRE].
  38. [38]
    V. Hubeny, A. Maloney and M. Rangamani, String-corrected black holes, JHEP 05 (2005) 035 [hep-th/0411272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    K.K. Uhlenbeck, Removable singularities in yang-mills fields, Commun. Math. Phys. 83 (1982) 11 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Instituto de Física Teórica UAM/CSICMadridSpain
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.HEP Theory Group, Departamento de FísicaUniversidad de OviedoOviedoSpain
  4. 4.INFN, Sezione di MilanoMilanoItaly

Personalised recommendations