Advertisement

Supersymmetric solutions of the cosmological, gauged, ℂ magic model

  • Samuele Chimento
  • Tomás Ortín
  • Alejandro Ruipérez
Open Access
Regular Article - Theoretical Physics
  • 43 Downloads

Abstract

We construct supersymmetric solutions of theories of gauged \( \mathcal{N} \) = 1, d = 5 supergravity coupled to vector multiplets with a U(1)R Abelian (Fayet-Iliopoulos) gauging and an independent SU(2) gauging associated to an SU(2) isometry group of the Real Special scalar manifold. These theories provide minimal supersymmetrizations of 5-dimensional SU(2) Einstein-Yang-Mills theories with negative cosmological constant. We consider a minimal model with these gauge groups and the “magic model” based on the Jordan algebra J 3 with gauge group SU(3) × U(1)R, which is a consistent truncation of maximal SO(6)-gauged supergravity in d = 5 and whose solutions can be embedded in Type IIB Superstring Theory. We find several solutions containing selfdual SU(2) instantons, some of which asymptote to AdS5 and some of which are very small, supersymmetric, deformations of AdS5. We also show how some of those solutions can be embedded in Romans’ SU(2) × U(1)-gauged half-maximal supergravity, which was obtained by Lu, Pope and Tran by compactification of the Type IIB Superstring effective action. This provides another way of uplifting those solutions to 10 dimensions.

Keywords

Supergravity Models Black Holes in String Theory Gauge Symmetry Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) R5412 [hep-th/9508072] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    S. Ferrara and R. Kallosh, Universality of supersymmetric attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    T. Ortín, Gravity and Strings, second edition, Cambridge University Press, (2015).Google Scholar
  7. [7]
    P. Meessen, Supersymmetric coloured/hairy black holes, Phys. Lett. B 665 (2008) 388 [arXiv:0803.0684] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Huebscher, P. Meessen, T. Ortín and S. Vaulà, N = 2 Einstein-Yang-Mills’s BPS solutions, JHEP 09 (2008) 099 [arXiv:0806.1477] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Bueno, P. Meessen, T. Ortín and P.F. Ramírez, \( \mathcal{N} \) = 2 Einstein-Yang-Mills’ static two-center solutions, JHEP 12 (2014) 093 [arXiv:1410.4160] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Meessen and T. Ortín, \( \mathcal{N} \) = 2 super-EYM coloured black holes from defective Lax matrices, JHEP 04 (2015) 100 [arXiv:1501.02078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    P. Meessen, T. Ortın and P.F. Ramírez, Non-Abelian, supersymmetric black holes and strings in 5 dimensions, JHEP 03 (2016) 112 [arXiv:1512.07131] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    T. Ortín and P.F. Ramírez, A non-Abelian Black Ring, Phys. Lett. B 760 (2016) 475 [arXiv:1605.00005] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P.F. Ramírez, Non-Abelian bubbles in microstate geometries, JHEP 11 (2016) 152 [arXiv:1608.01330] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    P.A. Cano, T. Ortın and P.F. Ramírez, A gravitating Yang-Mills instanton, JHEP 07 (2017) 011 [arXiv:1704.00504] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P.A. Cano, P. Meessen, T. Ortín and P.F. Ramírez, Non-Abelian black holes in string theory, JHEP 12 (2017) 092 [arXiv:1704.01134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    P. Meessen, T. Ortın and P.F. Ramírez, Dyonic black holes at arbitrary locations, JHEP 10 (2017) 066 [arXiv:1707.03846] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Ávila, P.F. Ramírez and A. Ruipérez, One Thousand and One Bubbles, JHEP 01 (2018) 041 [arXiv:1709.03985] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Huebscher, P. Meessen, T. Ortín and S. Vaulà, Supersymmetric N = 2 Einstein-Yang-Mills monopoles and covariant attractors, Phys. Rev. D 78 (2008) 065031 [arXiv:0712.1530] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    M. Cariglia and O.A.P. Mac Conamhna, The general form of supersymmetric solutions of N = (1,0) U(1) and SU(2) gauged supergravities in six-dimensions, Class. Quant. Grav. 21 (2004) 3171 [hep-th/0402055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five-dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J.P. Gauntlett and J.B. Gutowski, All supersymmetric solutions of minimal gauged supergravity in five-dimensions, Phys. Rev. D 68 (2003) 105009 [Erratum ibid. D 70 (2004) 089901] [hep-th/0304064] [INSPIRE].
  22. [22]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    J.B. Gutowski and W. Sabra, General supersymmetric solutions of five-dimensional supergravity, JHEP 10 (2005) 039 [hep-th/0505185] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J. Bellorın, P. Meessen and T. Ortín, All the supersymmetric solutions of N = 1, d = 5 ungauged supergravity, JHEP 01 (2007) 020 [hep-th/0610196] [INSPIRE].
  26. [26]
    J. Bellorın and T. Ortín, Characterization of all the supersymmetric solutions of gauged N = 1, d = 5 supergravity, JHEP 08 (2007) 096 [arXiv:0705.2567] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J. Bellorín, Supersymmetric solutions of gauged five-dimensional supergravity with general matter couplings, Class. Quant. Grav. 26 (2009) 195012 [arXiv:0810.0527] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S. Chimento and T. Ortín, On 2-dimensional Kähler metrics with one holomorphic isometry, arXiv:1610.02078 [INSPIRE].
  29. [29]
    S. Chimento and T. Ortín, On timelike supersymmetric solutions of gauged minimal 5-dimensional supergravity, JHEP 04 (2017) 017 [arXiv:1611.09383] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. Chimento, On timelike supersymmetric solutions of Abelian gauged 5-dimensional supergravity, JHEP 07 (2017) 059 [arXiv:1705.01903] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren and A. Van Proeyen, N = 2 supergravity in five-dimensions revisited, Class. Quant. Grav. 21 (2004) 3015 [hep-th/0403045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Günaydin, G. Sierra and P.K. Townsend, The Geometry of N = 2 Maxwell-Einstein Supergravity and Jordan Algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Günaydin, G. Sierra and P.K. Townsend, Exceptional Supergravity Theories and the MAGIC Square, Phys. Lett. B 133 (1983) 72 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    M. Günaydin, L.J. Romans and N.P. Warner, Compact and Noncompact Gauged Supergravity Theories in Five-Dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Günaydin, G. Sierra and P.K. Townsend, Gauging the d = 5 Maxwell-Einstein Supergravity Theories: More on Jordan Algebras, Nucl. Phys. B 253 (1985) 573 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    L.J. Romans, Gauged N = 4 Supergravities in Five-dimensions and Their Magnetovac Backgrounds, Nucl. Phys. B 267 (1986) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    H. Lü, C.N. Pope and T.A. Tran, Five-dimensional N = 4, SU(2) × U(1) gauged supergravity from type IIB, Phys. Lett. B 475 (2000) 261 [hep-th/9909203] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S. Chimento, T. Ortín and A. Ruipérez, Yang-Mills instantons in Kähler spaces with one holomorphic isometry, Phys. Lett. B 778 (2018) 371 [arXiv:1710.00764] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    T. Ortín and C. Santoli, Supersymmetric solutions of SU(2)-Fayet-Iliopoulos-gauged \( \mathcal{N} \) = 2, d = 4 supergravity, Nucl. Phys. B 916 (2017) 37 [arXiv:1609.08694] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    J.P. Gauntlett, J.B. Gutowski and N.V. Suryanarayana, A Deformation of AdS 5 × S 5, Class. Quant. Grav. 21 (2004) 5021 [hep-th/0406188] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Samuele Chimento
    • 1
  • Tomás Ortín
    • 1
  • Alejandro Ruipérez
    • 1
  1. 1.Instituto de Física Teórica UAM/CSICMadridSpain

Personalised recommendations